• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 16
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation de la propagation de fractures hydrauliques par la méthode des éléments finis étendue / Modeling fluid-driven cracks with the extended finite element method

Paul, Bertrand 02 December 2016 (has links)
La perméabilité des roches est fortement influencée par la présence de fractures car ces dernières constituent un chemin préférentiel pour l’écoulement des fluides. Ainsi la présence de fractures naturelles est un facteur déterminant pour la productivité d’un réservoir. Dans le cas de roches à faible conductivité, des techniques de stimulation telle que la fracturation hydraulique sont utilisées pour en augmenter la perméabilité et rendre le réservoir exploitable d’un point de vue économique. A l’inverse, dans le cas du stockage géologique, la présence de fractures dans la roche représente un danger dans la mesure où elle facilite le transport et la migration des espèces disséminées dans la roche. Pour le stockage de CO2, les fuites par les fractures présentes dans les couvertures du réservoir et la réactivation des failles constituent un risque majeur. Et en ce qui concerne le stockage géologique de déchets radioactifs, la circulation de fluide dans des réseaux de fractures nouvelles ou réactivées au voisinage de la zone de stockage peut aboutir à la migration de matériaux nocifs. Il est donc important de prévoir les effets de la présence de fractures dans un réservoir. Le but de cette thèse est le développement d’un outil numérique pour la simulation d’un réseau de fractures et de son évolution sous sollicitation hydro-mécanique. Grâce à sa commodité, la méthode des éléments finis étendue (XFEM) sera retenue et associée à un modèle de zone cohésive. La méthode XFEM permet en effet l’introduction de fissures dans le modèle sans nécessairement remailler en cas de propagation des fissures. L’écoulement du fluide dans la fissure et les échanges de fluide entre la fissure et le milieu poreux seront pris en compte via un couplage hydro-mécanique. Le modèle est validé avec une solution analytique asymptotique pour la propagation d’une fracture hydraulique plane dans un milieu poroélastique en 2D comme en 3D. Puis, nous étudions la propagation de fractures hydrauliques sur trajets inconnus. Les fissures sont initialement introduites comme des surfaces de fissuration potentielles étendues. Le modèle de zone cohésive sépare naturellement les domaines adhérents et ouverts. Les surfaces potentielles de fissuration sont alors actualisées de manière implicite par un post-traitement de l’état cohésif. Divers exemples de réorientation de fissures hydrauliques et de compétition entre fissures voisines sont analysés. Enfin, nous présentons l’extension du modèle aux jonctions de fractures hydrauliques / The permeability of rocks is widely affected by the presence of fractures as it establishes prevailing paths for the fluid flow. Natural cracks are then a critical factor for a reservoir productiveness. For low permeability rocks, stimulation techniques such as hydrofracturing have been experienced to enhance the permeability, so that the reservoir becomes profitable. In the opposite, when it comes to geological storage, the presence of cracks constitutes a major issue since it encourages the leak and migration of the material spread in the rock. In the case of CO2 storage, the scenario of leakage across the reservoir seal through cracks or revived faults is a matter of great concern. And as for nuclear waste storage, the fluid circulation in a fracture network around the storage cavity can obviously lead to the migration of toxic materials. It is then crucial to predict the effects of the presence of cracks in a reservoir. The main purpose of this work is the design of a numerical tool to simulate a crack network and its evolution under hydromechanical loading. To achieve this goal we chose the eXtended Finite Element Method (XFEM) for its convenience, and a cohesive zone model to handle the crack tip area. The XFEM is a meshfree method that allows us to introduce cracks in the model without necessarily remeshing in case of crack propagation. The fluid flow in the crack as well as the exchanges between the porous rock and the crack are accounted for through an hydro-mechanical coupling. The model is validated with an analytical asymptotic solution for the propagation of a plane hydraulic fracture in a poroelastic media, in 2D as well as in 3D. Then we study the propagation of hydraulic fractures on non predefined paths. The cracks are initially introduced as large potential crack surfaces so that the cohesive law will naturally separate adherent and debonding zones. The potential crack surfaces are then updated based on a directional criterion appealing to cohesive integrals only. Several examples of crack reorientation and competition between nearby cracks are presented. Finally, we extend our model to account for the presence of fracture junctions
32

Propriétés d’adhérence de revêtements projetés plasma sur substrats fragiles : caractérisation et identification de lois d’interface par Modèles de Zones Cohésives / Plasma sprayed coatings adhesion properties on brittle substrate : characterization and identification of interface laws by cohesive zone model

Pons, Elodie 29 February 2016 (has links)
La rupture adhésive est un mécanisme de défaillance fréquemment observé sur les structures multicouches et les pièces revêtues dans les technologies actuelles telles que la microélectronique, le biomédical ou l’aérospatial. Selon l’application visée et les sollicitations en service rencontrées, des propriétés d’adhérence minimales sont attendues.Le CEA Le Ripault étudie la tenue mécanique de systèmes revêtement/substrat. Deux assemblages constitués d’un revêtement projeté plasma, l’un céramique et l’autre métallique, sur un substrat fragile en céramique sont étudiés. Ces revêtements disposent d’une microstructure et de propriétés mécaniques bien spécifiques liées au procédé d’élaboration. L’un des objectifs de cette thèse est de caractériser et quantifier l’adhérence des revêtements projetés plasma aux moyens d’essais mécaniques. Classiquement, les essais d’adhérence sont largement développés pour l’étude de l’adhérence de revêtements céramiques sur substrats ductiles, pour des applications de type barrières thermiques. Or la grande fragilité des substrats et des revêtements représente des difficultés supplémentaires à la mise en œuvre des essais d’adhérence. Afin de prévenir la rupture cohésive du substrat, les essais nécessitent un effort d’adaptation tenant compte des contraintes dimensionnelles et matérielles imposées par l’assemblage. Par ailleurs, afin de caractériser intégralement l’adhérence, différents modes de sollicitation sont balayés à travers différents essais d’adhérence : traction, cisaillement bi-entaillé, clivage en coin, flexion 4 points sur éprouvette entaillée, four-point bend End Notched Flexure test (4-ENF),…Le second objectif est de prédire l’amorçage et la propagation de fissures à l’interface afin de garantir la tenue mécanique des assemblages. Pour cela, une stratégie d’identification d’une loi d’interface, décrivant son comportement à la rupture, est proposée. Les Modèles de Zones Cohésives (MZC) sont adoptés pour modéliser le délaminage, sous le code éléments finis ABAQUS, à l’aide d’une loi traction-séparation bilinéaire. La comparaison entre les réponses macroscopiques numérique et expérimentale de chacun des essais d’adhérence effectué permet de calibrer chaque paramètre de la loi cohésive. Ainsi, la démarche expérimentale et numérique couplée permet d’obtenir des scénarios de rupture conformes aux observations expérimentales et d’évaluer l’intégrité de la structure soumise à une sollicitation thermique ou mécanique donnée. / Interfacial cracking is a recurrent failure mechanism observed in multilayer structures and coating systems using in various fields as microelectronics, biomedical engineering or aerospace. According to the aimed application and operating loadings, a minimum adhesion of the interface is expected.CEA Le Ripault studies the mechanical strength of coating/substrate systems. Two multilayer structures made of plasma sprayed coating layer, one ceramic and the other metallic, on a brittle ceramic substrate are studied. These plasma sprayed coatings have specifics microstructure and mechanicals properties linked to manufacturing process.One of the purposes of this work is to characterize and quantify plasma sprayed coatings adhesion through mechanical tests. Adhesion tests are widely developed for study the adhesion of ceramic coatings on ductile substrates for thermal barrier coatings applications. However the high brittleness of substrates and coatings constitutes an additional difficulty to implement adhesion tests. In order to prevent cohesive failure in substrate, adhesion tests require an adaptation taking materials and dimensionals constraints into account. Furthermore, in order to fully characterize the adhesion, different loadings modes are scanned through various adhesion tests: tensile test, shear test, wedge test, four-point bending test, 4-ENF…The second purpose is to predict crack initiation and propagation along the interface in order to guarantee multilayer mechanical strength. In that purpose, an interfacial law identification strategy is proposed to describe failure behavior. A Cohesive Zone Model (CZM) is adopted to model the delamination, using the finite element code ABAQUS, with a bilinear traction-separation law. The numerical and experimental macroscopic response comparison of each performed adhesion test allows to identify one cohesive law parameter. Thus, the coupled approach allows to model failure scenario in good agreement with experimental observations and assess the integrity of the assembled structure under a thermal or a mechanical loading.
33

Caractérisation par corrélation d'images et modélisation par zones cohésives du comportement mécanique des interfaces / Characterization by digital image correlation and cohesive zone modeling of interfaces mechanics

Azab, Marc 29 August 2016 (has links)
Ce travail concerne l'étude de l'intégrité des matériaux ou des structures assemblées en s'intéressant à la modélisation du mécanisme de rupture à l'aide des modèles de zones cohésives (MZC). Cette approche présente l'avantage d'incorporer une longueur caractéristique dans la description de la rupture, ce qui permet notamment d'évaluer des effets de taille. Trois paramètres caractérisent ces MZC : la contrainte de traction Tmax à laquelle l'interface ou le matériau peut résister avant d'amorcer sa décohésion, l'ouverture critique à partir de laquelle une fissure est créée localement et finalement une loi traction-ouverture qui décrit la répartition des efforts cohésifs selon le mécanisme opérant.L'objectif principal de cette thèse est d'identifier les paramètres cohésifs caractérisant la rupture interfaciale dans un joint de colle ou cohésif dans un matériau. Pour cela, une première étape était d'élaborer un modèle analytique, décrivant correctement la cinématique d'un essai DCB ou Wedge, pour caractériser la rupture mode I. Bien que le mode d'ouverture soit opérant, le champ de déplacement au voisinage de l'entaille n'est pas K-dominant pour ces essais, du moins pas toujours. Plusieurs lois de traction-ouverture ont été considérées afin d'étudier leur influence sur la réponse locale et globale de l'essai. Une méthodologie d'identification inverse a été proposée à partir d'un modèle analytique, qui consiste à extraire les paramètres cohésifs en minimisant l'erreur au sens des moindres carrés entre les déflections analytique et numérique. Une fois validée, elle a été par la suite appliquée à un cas réel, qui est l'essai d'insertion de lame. La mesure du champ de déplacement expérimental est possible grâce à une mesure du champ de déplacement par corrélation d'image.Une analyse approfondie a été aussi consacrée à l'étude de la "Process Zone" pour un essai DCB ou Wedge. Cette étude met en évidence la variation de Lcz en fonction de la géométrie des éprouvettes, des propriétés de la zone cohésive, des propriétés mécaniques du matériau ou encore la forme de la loi traction-ouverture utilisée. Une nouvelle expression pour estimer Lcz est établie pour les zones cohésives rectangulaires et triangulaires.Une deuxième approche d’identification locale, basée sur le travail de Réthoré et Estevez (2013), a été aussi proposée et discutée. Elle a été mise en oeuvre pour un essai d'insertion de lame, avant d'être appliquée à un essai de flexion 4 points entaillé. Un aller-retour entre simulation numérique et résultat expérimental permet d'identifier les propriétés cohésives du matériau ou de l'interface / This work concerns the study of materials and assemblies structures integrity using cohesive zone model (CZM) to analyze fracture. These models have the advantage to incorporate a characteristic length in the description of fracture initiation and propagation, which can lead to size effects studies. Three parameters characterize the CZM : the maximal cohesive traction Tmax to which the interface or the material can resist before the onset of debonding, the critical crack opening from which a crack is created locally and finally the traction-separation law which describe the cohesive traction distribution depending on fracture process.The main purpose of this thesis is to identify the cohesive zone parameters describing fracture at the interface or in the material. The first step was to elaborate an analytical model which can describe properly the DCB or Wedge Test kinematic, to characterize mode I fracture. Despite the fact of mode I fracture, the displacement field near the crack-tip is not K-dominant for these tests, at least not always. Various traction-separation laws were considered in order to study their influence on the local and global response of the test. An inverse identification methodology has been proposed from the analytical model, which can extract cohesive parameters through a least square error minimization between numerical and analytical deflection. Once validated, it was subsequently applied to a real Wedge test. The experimental displacement field measurement was done due to digital image correlation measurement.A deep analysis to evaluate the fracture process zone length has been also dedicated in the case of Wedge or DCB Tests. This analysis shows that Lcz is not an intrinsic interface or materials property and it can vary depending on the sample's geometry, the cohesive zone properties or the traction-separation law. A new expression to determine Lcz was established for rectangular and triangular cohesive zone.A second local identification approach, based on the work of Réhoré and Estevez (2013), has been also proposed. It was implemented to analyze the Wedge test, before applying it to a notched four points bending test. A round trip between numerical simulations and experimental results allow identifying the cohesive properties in the materiel or at the interface.
34

Méthode de raffinement local adaptatif multi-niveaux pour la fissuration des matériaux hétérogènes / Local adaptative refinement and multilevel method for the fracture ofheterogeneous materials

Delaume, Eric 27 November 2017 (has links)
Afin d'anticiper les effets du vieillissement des enceintes de confinement des centrales électronucléaires, l'IRSN effectue des recherches avancées sur le vieillissement du béton. Les problématiques de fissuration liées au vieillissement sont abordées à l'aide d'une méthode micromécanique basée sur des Modèles de Zones Cohésives Frottantes et à l'aide de la méthode d'<<Eigen-Erosion >> basée sur des considérations énergétiques. L'objectif de la thèse est de réduire les temps de calcul liés à ces deux approches, tout en conservant une bonne précision dans les zones d'intérêt, en adaptant la discrétisation en espace à l'aide de techniques de raffinement local adaptatif. La méthode de raffinement retenue est la méthode CHARMS (Conforming Hierarchical Adaptive Refinement Methods). Cette méthode, basée sur le raffinement des fonctions de base, permet un raffinement sans dégradation de la qualité des mailles initiales. En particulier, les non conformités géométriques sont naturellement prises en compte. Initialement appliquée à la Mécanique des Fluides, cette méthode est d'abord étendue à la Mécanique des Milieux Dé-formables en proposant un critère de raffinement général, puis elle est appliquée à la méthode d'<< Eigen-Erosion >> et aux Modèles de Zones Cohésives. Enfin, l'influence de la morphologie des inclusions d'un Volume Elémentaire Représentatif de béton numérique sur le comportement apparent et sur la fissuration est étudiée. / In order to anticipate effects of ageing in confinement structures of nuclear power plant, the IRSN develops research programs to study the ageing of concrete. A micromechanical approach, based on Cohesive Zone Models, and the "Eigen-Erosion" method, based on energetics consideration, are used. The aim of this study is to reduce the computational cost while keeping simulations with good accuracy in the areas of interest. The strategy is to adapt the spatialdiscretization in the areas of interest using local adaptive refinement technics. The selected refinement method is called CHARMS (Conforming Hierarchical Adaptive Refinement Methods). CHARMS is based on the refinement of basis functions and enables refinement without any loss of the inital mesh quality. The geometrical non conformities are implicitly handled. Initialyapplied to Fluid Mechanics, the method is first extended to Solid Mechanics with a specific refinement criterion. It is then applied to "Eigen-Erosion" and to Cohesive Zone Models. The inclusion's shape of a Representative Elementary Volume of numerical concrete is studied in order to determine the influence over the apparent behaviour and the crack propagation.
35

Modélisation du comportement des assemblages collés : analyse métrologique et prise en compte des dissipations plastique et visqueuse / Bonded Assemblies Behavior Modeling : metrological analysis and consideration of plastic and viscous dissipations

Ly, Racine 08 June 2017 (has links)
Dans la conception et la fabrication des structures, l'assemblage des composants est une étape cruciale en termes de durabilité et de fiabilité. Les techniques l'assemblage dites mécaniques telles que le boulonnage, le rivetage et le soudage entre autres, ont longtemps été celles traditionnelles. Toutefois, les avancées dans l'étude et l'analyse de la fissuration au sein des matériaux ont permis de mettre en évidence certains de leurs inconvénients en tant que cause de rupture de ces structures à travers les concentrations de contraintes localisées et/ou l'altération mécanique ou thermique des propriétés locales des pièces assemblées. Ainsi, des techniques alternatives tel que le collage structural ont été développées permettant de s'affranchir ou plutôt de réduire ces effets indésirables lors de l'assemblage, pour le peu que le processus soit bien maîtrisé. Parmi les avantages les plus connus, le collage permet d'une part une meilleure transmission et répartition des efforts à l'interface réduisant ainsi l'endommagement en fatigue et augmentant la durée de vie de l'assemblage, et d'autre part, de conserver l'intégrité des pièces à assembler. D'autres avantages proviennent également de la conception des adhésifs structuraux qui, après l'application de traitements physico-chimiques permettent d'ajouter des propriétés thermiques, acoustiques et d'étanchéité.Malgré ces avantages, le collage souffre d'une réputation de non fiabilité due aux manques d'outils de prédiction du comportement des joints collés. En effet, les paramètres qui influent sur le comportement de l'interface sont nombreux et sont souvent sources de variabilité sur la résistance du joint de colle. L'étude de cette ténacité des joints d'adhésif s'effectue grâce à des essais de fissuration selon différents modes de rupture qui cherchent à mesurer l'énergie de fissuration de l'assemblage. La connaissance de cette énergie permet d'être prédictif dans la plupart des cas sur la propagation des fissures pour le peu que nous soyons en mesure de décrire et de prédire le comportement de l'interface.D'un point de vue numérique, de nombreuses techniques et formulations de loi de comportement ont été proposées dans un souci de reproduire le comportement de l'interface au sein des assemblages. Parmi ces dernières, celle des lois de zone cohésive semble être une voie des plus prometteuses en terme de modélisation et de simulation des interfaces par son caractère local et discret. Parmi les avantages qu'elles procurent demeurent la prise en compte intrinsèque de l'endommagement et des phénoménologies du comportement du joint collé. En outre, de nombreuses études ont été entreprises pour identifier ces lois de zone cohésive en comparant des observations issues d'essais de fissuration et des sorties de modèle où elles sont utilisées. Cette identification se fait au moyen d'algorithmes itératifs de minimisation d'une fonction coût qui mesure la métrique entre observations et sorties de modèles. Toutefois, peu d'importance est attachée d'une part, aux sensibilités des techniques de mesure employées par rapport aux paramètres de loi de zone cohésive, et d'autre part, sur les incertitudes associées aux paramètres de loi de zone cohésive identifiés. À notre connaissance, aucun travail sur ces deux derniers aspects n'a été mené et constitue ainsi le principal propos de ce mémoire de thèse. [...] / In the design and manufacture of structures, assembly of components is a crucial step in terms of durability and reliability. Mechanical assembly techniques such as bolting, riveting and welding, among others, have long been traditional. However, advances in the study and analysis of cracks within materials have made it possible to highlight some of their disadvantages as a cause of rupture of these structures through localized stress concentrations and / Mechanical or thermal alteration of the local properties of the assembled parts. Thus, alternative techniques such as structural bonding have been developed which make it possible to eliminate or rather reduce these undesirable effects during assembly, for the little that the process is well controlled. Among the best known advantages, bonding allows, on the one hand, a better transmission and distribution of forces at the interface, thus reducing fatigue damage and increasing the service life of the assembly and, on the other hand, maintain the integrity of the parts to be assembled. Other advantages also arise from the design of structural adhesives which, after the application of physicochemical treatments, make it possible to add thermal, acoustic and sealing properties.Despite these advantages, bonding suffers from a reputation for unreliability due to the lack of tools for predicting the behavior of bonded joints. Indeed, the parameters which influence the interface behavior are numerous and are often sources of variability on the strength of the bonded joint. The study of this toughness of the adhesive joints is carried out by means of crack tests according to different modes of fracture which seek to measure the assembly crack energy. The knowledge of this energy makes it possible to be predictive in most cases on cracks propagation for the little that we are able to describe and predict the interface behavior.From a numerical point of view, numerous techniques and formulations of interface law have been proposed in order to reproduce the interface behavior within the assemblies. Among the latter, that of the cohesive zone laws seems to be one of the most promising ways in terms of modeling and simulation of the interfaces by its local and discrete character. Among the advantages that they provide are the intrinsic consideration of damage and behavior phenomenologies of bonded joint. In addition, numerous studies have been undertaken to identify these cohesive zone laws by comparing observations from crack tests and model outputs where they are used. This identification is done by means of iterative minimization algorithms of a cost function which measures the metric between observations and models outputs. However, little importance is attached, on the one hand, to the sensitivities of the measurement techniques used in relation to the cohesive zone law parameters and, on the other hand, to the uncertainties associated with the identified cohesive zone law parameters. To our knowledge, no work on these two aspects has been conducted and is thus the main purpose of this thesis. [...]
36

Passage d’un modèle d’endommagement continu régularisé à un modèle de fissuration cohésive dans le cadre de la rupture quasi-fragile / Transition from a nonlocal damage model to a cohesive zone model within the framework of quasi-brittle failure

Cuvilliez, Sam 01 February 2012 (has links)
Les travaux présentés dans ce mémoire s'inscrivent dans l'étude et l'amélioration des modèles d'endommagement continus régularisés (non locaux), l'objectif étant d'étudier la transition entre un champ d'endommagement continu défini sur l'ensemble d'une structure et un modèle discontinu de fissuration macroscopique.La première étape consiste en l'étude semi-analytique d'un problème unidimensionnel (barre en traction) visant à identifier une famille de lois d'interface permettant de basculer d'une solution non homogène obtenue avec un modèle continu à gradient d'endommagement vers un modèle discontinu de fissuration cohésive. Ce passage continu / discontinu est construit de telle sorte que l'équivalence énergétique entre les deux modèles soit assurée, et reste exacte quelque soit le niveau de dégradation atteint par le matériau au moment où cette transition est déclenchée.Cette stratégie est ensuite étendue au cadre 2D (et 3D) éléments finis dans le cas de la propagation de fissures rectilignes (et planes) en mode I. Une approche explicite basée sur un critère de dépassement d'une valeur « critique » de l'endommagement est proposée afin de coupler les modèles continus et discontinus au sein d'un même calcul quasi-statique par éléments finis. Enfin, plusieurs résultats de simulations menées avec cette approche couplée sont présentés. / The present work deals with the study and the improvement of regularized (non local) damage models. It aims to study the transition from a continuous damage field distributed on a structure to a discontinuous macroscopic failure model.First, an analytical one-dimensional study is carried out (on a bar submitted to tensile loading) in order to identify a set of interface laws that enable to switch from an inhomogeneous solution obtained with a continuous gradient damage model to a cohesive zone model. This continuous / discontinuous transition is constructed so that the energetic equivalence between both models remains ensured whatever the damage level reached when switching.This strategy is then extended to the bi-dimensional (and tri-dimensional) case of rectilinear (and plane) crack propagation under mode I loading conditions, in a finite element framework. An explicit approach based on a critical damage criterion that allows coupling both continuous and discontinuous approaches is then proposed. Finally, results of several simulations led with this coupled approach are presented.
37

Simulation numérique de l’écaillage des barrières thermiques avec couplage thermo-mécanique / Coupled thermomechanical simulation of the failure of thermal barrier coatings of turbine blades

Rakotomalala, Noémie 15 May 2014 (has links)
L'objectif de ce travail de thèse est de mettre en place une simulation thermo-mécanique couplée d'une aube revêtue permettant de modéliser l'écaillage de la barrière-thermique qui survient dans les conditions de service de l'aube. La barrière thermique est un revêtement isolant déposé à la surface du substrat monocristallin base Nickel AM1 constitutif de l'aube préalablement recouverte d'une sous-couche. Le mode de dégradation dominant dans ces systèmes est la création de fissures qui résultent de l'accroissement des ondulations hors-plan d'une couche intermédiaire d'oxyde formée en service entre la céramique et la sous-couche. En vue de modéliser ce phénomène d'écaillage, un ensemble d'outils numériques permettant de réaliser un calcul 3D par éléments finis thermo-mécanique couplé de l'aube revêtue est développé au sein du code de calcul par éléments finis Z-set. L'insertion d'éléments de zone cohésive mécanique et thermique au niveau de l'interface barrière-thermique/substrat permet de tenir compte simultanément des changements dans le processus de transert de charge et des variations du flux de chaleur causés par l'amorçage et la propagation d'une fissure interfaciale. L'élément fini d'interface mixte de Lorentz qui repose sur un Lagrangien augmenté, est mis en oeuvre. Afin de tenir compte des propriétés structurelles du revêtement, la modélisation de la barrière thermique est réalisée au moyen d'éléments de coque thermo-mécaniques reposant sur l'approche dite “Continuum Based”. Ces éléments sont développés puis validés dans le cadre de la thèse. La méthode utilisée pour réalier le couplage thermo-mécanique est l'algorithme partitioné CSS (Conventional Serial Staggered) sous-cyclé à pas de couplage fixe dont on montre les limitations dans le cas d'une simulation impliquant la propagation d'une fissure. L'introduction de pas de couplage adaptatifs contrôlés au moyen d'une variable interne du problème mécanique a permis de contourner ces limitations. L'ensemble des briques numériques est validé sur des cas tests de complexité croissante. Des cas d'applications effectués sur des géométries tubulaires à gradient thermique de paroi sont réalisés afin de tester le modèle couplé sur des structures et des chargements proches des conditions de service de l'aube. Enfin, des calculs thermo-mécaniques couplés sur aube revêtue sont présentés. / The purpose of this thesis is to perform a coupled thermomechanical simulation of the failure of thermal barrier coatings for turbine blades under service conditions. The thermal barrier coating is an insulating component applied to the single crystal Nickel-based superalloy AM1 substrate which is covered with a bond coat beforehand. The main degradation mode of those systems is due to the initiation and propagation of cracks caused by the out-of-plane undulation growth of an oxide layer formed in service. A set of numerical tools is implemented into the Finite Element code Z-set in order to perform a 3D thermomechanically coupled simulation of the failure of thermal barrier coatings for turbine blades. Inserting thermomechanical cohesive zone elements at the interface between the coating and the substrate makes it possible to account for the changes in the load transfer and the variations in the heat flux as a consequence of interface degradations. The mixed finite interface element of Lorentz based on an Augmented Lagrangian is used. The thermal barrier coating is modelled by means of thermomechanical shell elements implemented using the Continuum-Based approach to take advantage of the structural properties of the coating layer. Moreover, the partitionned CSS (Conventional Serial Staggered) algorithm used to couple thermal and mechanical problems is assessed. The limitations of sub-cycling with constant coupling time-step are shown through a simulation with crack propagation. The introduction of adaptative time-stepping allows to circumvent that issue. The numerical tools are assessed on test cases with increasing complexity. Numerical simulations on cylindrical tube with a thermal through-thickness gradient are performed with realistic loading sequences. Finally, thermomechanical simulations on turbine blades covered with thermal barrier coating are shown.
38

Modélisation numérique d'assemblages collés : application à la réparation de structures en composites / Numerical simulation of adhesive joint : application to the repair of composite structures

Peng, Lingling 31 January 2013 (has links)
Cette étude fait partie d'un programme de recherche concernant la réparation de structures composites par collage de patchs externes. Les objectifs principaux de ce programme sont d'une part l'identification de l'ensemble des facteurs susceptibles d’influencer les performances à long terme de ce type de réparation, et d’autre part de déterminer dans quelle mesure l’utilisation de tels assemblages peuvent s'avérer une solution optimale. La conception d'un tel système passe obligatoirement par le développement d'un outil de simulation et de prédiction robuste du fait des divers mécanismes d’endommagement pouvant intervenir de fa?on très complexe et de la rupture finale du système résultant d’une propagation des zones endommagées. Cette étude compose d’une et d’autre l’aspect de la modélisation numérique, et l'aspect expérimental. Le dialogue entre les résultats numériques et expérimentaux permet, d’une part de comprendre les mécanismes d’endommagement et l’évolution de ce dernier dans le système réparé, d’autre part de valider le modèle numérique. En particulier, nos efforts ont été concentrés, en utilisant le logiciel LS-dyna, sur l’application des modèles de zone cohésive (MZC). Le comportement au délaminage d’un composite carbone/époxyde et de l’adhésif sont étudié avec les essais en mode I, mode II et mode mixte. Une étude paramétrique de MZC est effectuée. Le modèle de zone cohésive validé est utilisé pour modéliser le comportement en traction des composites réparés par collage de patches externes / This study is one part of a program of research with regard to the repair of composite structure with extern bonded-patches. The principal objectives of this program are, on one side, the identification of all the factors susceptible to influence the long-term performance of this type of repair, on the other, to determine the extent to which the use of such assemblage can be proved to be an optimal solution. The conception of such a system needs essentially the development of a tool of simulation and of robust prediction because various mechanisms of damage can take place in a very complex way and the final fracture of the system arise from the propagation of damage zones. This study consists of both numerical simulation and experimental aspect which can help us, on one side, understand the mechanisms of damage and its evolution in a repair structure, on the other, valid the numerical model. In particular, we concentrate in the application of cohesive zone model using LS-dyna. The behavior of delamination of carbon/epoxy composite and the adhesive is studied with the experiments in mode I, mode II and mode mixed. A parametric study is carried out. The validated cohesive zone model is used to simulate the tensile behavior of composite repaired by extern bonded-patches
39

PREDICTION OF DELAMINATION IN FLEXIBLE SOLAR CELLS: EFFECT OF CRITICAL ENERGY RELEASE RATE IN COPPER INDIUM GALLIUM DISELENIDE (CIGS) SOLAR CELL

Roger Eduardo Ona Ona (11837192) 20 December 2021 (has links)
<div>In this thesis, we propose a model to predict the interfacial delamination in a flexible solar cell. The interface in a multilayer Copper Indium Gallium Diselenide (CIGS) flexible solar cell was studied applying the principles of fracture mechanics to a fixed-arm-peel test. </div><div>The principles of fracture mechanics ( J-integral and cohesive model) were implemented in a finite element software to compare the experimental with the numerical peeling force. A fixed-arm-peel test was used to obtain the peeling force for different peeling angles. This peel force and material properties from the CIGS solar cell were processed in several non-linear equations, so the energy required to start the delamination was obtained.The accuracy of the model was compared by fitting the experimental and numerical peeling force, which had a difference of 0.08 %. It is demonstrated that the peeling process for 90-degree could be replicated in COMSOL® software for a CIGS solar cell.</div>
40

Modélisation de la tenue en fatigue des joints de brasure dans un module de puissance / Fatigue modeling of solder joints in a power module

Le, Van nhat 14 December 2016 (has links)
Cette thèse vise à réaliser des développements théoriques et numériques portant sur le comportement en cyclage thermomécanique de nouveaux alliages de brasure. L’objectif est de proposer une méthodologie de simulation de la fatigue des assemblages électroniques intégrant ce type de brasures. De nombreux modèles semi-empiriques de fatigue existent déjà mais ont montré leurs limites pour une prédiction suffisamment précise de la fiabilité. Il existe donc un besoin d’enrichir les approches existantes par une description des mécanismes de défaillance à l’échelle mésoscopique, en prenant en compte la microstructure fine de l’alliage d’étain. Une formulation décrivant la plasticité cristalline de l’étain et l’endommagement aux joints de grains a donc été développée et intégrée dans un code de calcul pour simuler les mécanismes de déformation dans le joint de brasure. / This thesis aims to carry out theoretical and numerical developments on the thermo-mechanical cyclic behavior of new solder alloys. The objective is to propose a methodology for modeling the fatigue of electronic packages including this type of solders. Several semi-empirical fatigue models already exist, but have shown their limitations for an accurate sufficiently prediction of reliability. Therefore, it requires to enrich the existing approaches by a description of failure mechanisms in the mesoscopic scale, taking into account the fine microstructure of the alloy of tin. A formulation describing the crystal plasticity of tin and the damage of grain boundaries has therefore been developed and integrated in the finite element code for simulating the fracture mechanisms of solder joint.

Page generated in 0.095 seconds