• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 14
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 63
  • 23
  • 21
  • 20
  • 19
  • 15
  • 15
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La représentation implicite des volumes pour l'analyse par éléments finis avec XFEM et Level-sets / Implicit representation of volumes for finite element analysis with XFEM and Level-sets

Moumnassi, Mohammed 09 December 2011 (has links)
La méthode des éléments finis (ÉF) est largement utilisée pour la simulation numérique de problèmes physiques formulés en terme d’équations aux dérivées partielles (EDP). Une étape cruciale du processus d’analyse par cette méthode est la discrétisation de la géométrie du domaine afin de construire le maillage sur lequel est formulé l’espace d’approximation du problème. Cependant, la création d’un maillage de qualité conforme aux frontières courbes et aux arêtes vives, dont dépend les résultats numériques, nécessite encore un apport significatif de temps humain lors du processus globale d’analyse. L’objet de ce travail est la mise en œuvre d’une nouvelle approche qui permet de réaliser des simulations sur un objet dont la frontière est non-conforme au maillage, tout en conservant les avantages des ÉF. Pour cela, on utilise une représentation implicite du domaine (Level set) et la méthode des éléments finis étendus (XFEM). Dans un premier temps, on s’intéresse à construire des objets par Level sets indépendamment de la discrétisation spatiale (i.e. un maillage simple). Des stratégies ont été développées afin de construire des objets implicites à partir de la représentation paramétrique la plus populaire en conception CAO, de préserver les arêtes vives et pour pouvoir représenter correctement les frontières courbes. Dans un deuxième temps, on s’intéresse à l’adaptation de la méthode XFEM afin de réaliser une intégration numérique correcte et de préserver la stabilité des formulations mixtes pour la gestion de la contrainte de Dirichlet. La dernière partie consiste à vérifier la précision et les taux de convergence dans le cas des frontières courbes et pour des objets entièrement non-conformes au maillage / The Finite Element Method (FEM) is widely used for numerical simulations of physical problems formulated in terms of partial differential equations (PDE). A crucial step in the process of analysis by this method is the discretization of the geometry to construct a mesh representing the approximation space of the problem. However, high quality mesh that conforms to the curved boundaries and sharp features, whose depends on the numerical results, still requires a significant amount of human time in the global process of analysis. The aim of this work is to implement a new approach that allows performing simulations on an object whose boundaries do not conform to the mesh, while retaining the benefits of FEM. For this purpose, the implicit representation of the domain (Level set) and the eXtended Finite Element Method (XFEM) are used. In the first step, the focus is to build objects by using Level sets independently of the spatial discretization (i.e. a simple mesh). Strategies have been developed to build implicit objects from the parametric representation (the most common in Computer Aided Design CAD), to preserve sharp features and correctly represent curved boundaries. In a second step, the focus lies on adapting XFEM to achieve a proper numerical integration and to preserve the stability of mixed formulations for managing Dirichlet constraints. The last part consists in verifying the accuracy and rate convergence in the case of implicit curved boundaries and of non-conforming objects to the mesh
2

Error Analysis of Extended Discontinuous Galerkin (XdG) Method

Toprakseven, Suayip January 2014 (has links)
No description available.
3

Haptic Dissection of Deformable Objects using Extended Finite Element Method

Li, Ziyun January 2014 (has links)
Interactive dissection simulation is an important research topic in the virtual reality (VR) community. There are many efforts on this topic; however, most of them focus on building a realistic simulation system regardless of the cost, and they often require expensive workstations and specialized haptic devices which prevent broader adoption. We show how to build a realistic dissection simulation at an affordable cost, which opens up applications in elementary education for virtual dissections which are currently not feasible. In this thesis, we present a fast and robust haptic system for interactive dissection simulations of finite elements based deformable objects which supports two type of haptic interactions: point contacts and cuts. We design a semi-progressive virtual dissection scheme of deformable objects in a real-time application. The quality and performance of visual/haptic feedback is demonstrated on a low-end commercial desktop PC with a haptic device.
4

Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth

Prasanna Kumar, Siddharth 21 August 2017 (has links)
Understanding failure mechanics of mechanical equipment is one of the most important aspects of structural and aerospace engineering. Crack growth being one of the major forms of failure in structural components has been studied for several decades to achieve greater reliability and guarantee higher safety standards. Conventional approaches using the finite element framework provides accurate solutions, yet they require extremely complicated numerical approaches or highly fine mesh densities which is computationally expensive and yet suffers from several numerical instabilities such as element entanglement or overly soften element behavior. The eXtended Finite Element Method (XFEM) is a relatively recent concept developed for modeling geometric discontinuities and singularities by introducing the addition of new terms to the classical shape functions in order to allow the finite element formulation to remain the same. XFEM does not require the necessity of computationally expensive numerical schemes such as active remeshing and allows for easier crack representation. In this work, verifies the validity of this new concept for quasi-static crack growth in tension with Abaqus' XFEM is employed. In the course of the work, the effect of various parameters that are involved in the modelling of the crack are parametrically analyzed. The load-displacement data and crack growth were used as the comparison criterion. It was found that XFEM is unable to accurately represent crack growth in the models in the elastic region without direct manipulation of the material properties. The crack growth in the plastic region is found to be affected by certain parameters allowing us to tailor the model to a small degree. This thesis attempts to provide a greater understanding into the parametric dependencies of XFEM crack growth. / Master of Science
5

High-order XFEM with applications to two-phase flows

Saxby, Ben Alexander January 2014 (has links)
In this thesis we investigate the accuracy of high-order Extended Finite Element Methods (XFEMs) for the solution of discontinuous problems, with a view to computing high-order solutions to a two-phase flow problem. We start by demonstrating optimal exponential rates of convergence for a spectral/hp element method applied to a smooth problem. We then consider an immersed method on a fixed background mesh that uses level sets to capture the location of a discontinuity and the XFEM to characterise this discontinuity on element interiors. We present an improvement to the modified XFEM of [Moes et. al., 2003] and then use it to solve both a Poisson problem and a linear elasticity problem with discontinuities modelled independently of the mesh. Very close to optimal rates of convergence are recovered for the Poisson problem with both straight and quadratically curved interfaces for approximations up to order p=4. These rates are better than those published in the literature for the XFEM with a curved weak discontinuity, and they are also the first optimally convergent results achieved using the modified XFEM for any problem with approximations of order p>1. Almost optimal rates of convergence are then also recovered for an elastic problem with a circular discontinuity for approximations up to order p=4.The use of the XFEM for time-dependent problems is investigated, and a novel level set update method that retains the signed distance property without need for reinitialisation is also presented. Finally we apply these methods to the time-dependent simulation of a two-phase flow problem. We validate the method against both an analytic dispersion relation for relaxation under small interface perturbations and an existing implementation for large interface perturbations. We then present a proof-of-concept implementation of a high-order immersed method for an oscillating tank flow problem and demonstrate the ability of our implementation to simulate problems with large amplitude interface deformations.
6

Modelado de grieta y estimación de vida en Fretting Fatiga mediante el Método de los Elementos Finitos Extendido X-FEM

Sabsabi ., Mohamad 20 April 2010 (has links)
El Método de los Elementos Finitos (MEF) ha sido y es uno de los métodos numéricos más utilizados para la estimación de parámetros caracterizantes en Mecánica de la Fractura. En el caso de la Mecánica de la Fractura Elástico-Lineal (MFEL), existe una gran cantidad de métodos que permiten estimar el factor de intensidad de tensiones K (o equivalentemente, la tasa de liberación de energía G) a partir de un análisis de elementos finitos (EF). Este tipo de análisis ha permitido estudiar la propagación de grieta en fase II y la estimación de vida. En los últimos años la aplicación del método de elementos finitos (X-FEM) ha demostrado ser una herramienta muy eficaz para el modelado numérico de grietas en MFEL, donde proporciona beneficios significativos en la elaboración de modelos numéricos de propagación de grietas. Las principales ventajas son que la malla de elementos finitos no necesita ajustarse a los límites de la grieta para modelar la discontinuidad geométrica, y, además, la regeneración de la malla no es necesaria en las simulaciones de crecimiento de la grieta. Por lo tanto, una única malla, que a menudo se genera con facilidad, puede ser utilizada para cualquier longitud de grieta y orientación. Las aportaciones realizadas en esta Tesis están relacionadas con tres aspectos: el modelado del contacto con fricción de caras de grieta con X-FEM, el modelado de la orientación de propagación en fretting fatiga en casos de contacto completo y la estimación de vida, también en contacto completo. En estos dos últimos casos se ha realizado una correlación con los resultados obtenidos mediante ensayos experimentales. En ciertos problemas de fatiga se pueden presentar situaciones de contacto entre caras de grieta a lo largo del ciclo, y por tanto, las grietas experimentan procesos de cierre con contacto entre sus caras. En esta Tesis se utiliza una formulación integral para establecer el contacto entre los segmentos de caras de grieta dentro de cada elemento. / Sabsabi ., M. (2010). Modelado de grieta y estimación de vida en Fretting Fatiga mediante el Método de los Elementos Finitos Extendido X-FEM [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7521 / Palancia
7

Skalenübergreifende Modellierung und Simulation des mechanischen Verhaltens von textilverstärktem Polypropylen unter Nutzung der XFEM

Kästner, Markus 20 April 2010 (has links) (PDF)
Die Arbeit beschreibt die skalenübergreifende Modellierung und Simulation des Werkstoffverhaltens von Faser-Kunststoff-Verbunden mit textiler Verstärkungsstruktur, die ausgehend von den konstitutiven Eigenschaften der Verbundbestandteile (Mikroskala) und ihrer geometrischen Anordnung im Verbund (Mesoskala) die rechnerische Vorhersage des effektiven Materialverhaltens des Verbundes (Makroskala) ermöglicht. Neben Schädigungsprozessen beeinflusst insbesondere das dehnratenabhängige Materialverhalten der polymeren Matrix das mechanische Verhalten des Verbundes. Dieser Einfluss wird anhand verschiedener Glasfaser-Polypropylen-Verbunde numerisch untersucht. Ein viskoplastisches Materialmodell bildet dabei das nichtlineare Materialverhalten von Polypropylen ab. Die Modellierung der textilen Verstärkungsstruktur erfolgt durch Anwendung der erweiterten Finiten-Elemente-Methode (XFEM). Anhand des Vergleichs von rechnerisch und experimentell gewonnenen Ergebnissen erfolgt schließlich die Verifikation der vorgeschlagenen Modellierungsstrategie. / This contribution covers the trans-scale modelling and simulation of the mechanical behaviour of textile-reinforced polymers. Starting from the material properties of the individual constituents (micro-scale) and their geometrical arrangement (meso-scale), the effective material behaviour of the composite (macro-scale) is numerically predicted. In addition to damage processes, the inelastic deformation behaviour of the composite is influenced by the strain-rate dependent material behaviour of the polymeric matrix. This influence is numerically investigated for different glass-fibre-polypropylene composites. A viscoplastic material model accounts for the nonlinear mechanical behaviour of polypropylene. The complex textile reinforcement is modelled by the eXtended finite element method (XFEM). A comparison of computed and experimental results allows for the verification of the proposed modelling strategy.
8

An efficient analysis of resin transfer molding process using extended finite element method / Une analyse efficace du procédé RTM à l’aide de la méthode XFEM

Jung, Yeonhee 02 September 2013 (has links)
Le procédé de fabrication par RTM (Resin Transfer Molding) a été étudié numériquement à l’aide de la méthode XFEM (eXtended Finite Element Method) combinée avec la méthode Level set. La méthode XFEM permet d’obtenir une bonne précision numérique de la pression près du front d’écoulement, où son gradient est discontinu. Les fonctions de forme enrichies de la méthode XFEM sont proposées à l’aide des valeurs de Level set en vue de décrire correctement l’interpolation avec le front d’écoulement. En plus, la méthode de Level set est utilisée pour transporter le front d’écoulement à chaque pas de temps durant le remplissage du moule. Les valeurs de Level set sont calculées à l’aide d’une méthode de Galerkin implicite. Le solveur multi-frontal d’IPSAP a été utilisé pour la résolution du système. Cette étude a été validée en comparaison avec les solutions analytiques.En outre, une méthode de localisation avec XFEM et la méthode Level set a été proposée afin d’améliorer l’efficacité de calcul. Elle permet de réduire le domaine de calcul près du front d’écoulement. Par conséquent, le temps de calcul est fortement réduit grâce à cette méthode. Un test d’efficacité a été fait avec des modèles simples en écoulement laminaire ou radial.Quelques exemples d’application sont présentés pour illustrer la capacité de cette méthode. Une pale d’éolienne a également traitée comme application industrielle. Enfin, une interface d’utilisateur graphique a été développée en vue de fournir une facilité des pré- et post-processus. / Numerical simulation for Resin Transfer Molding (RTM) manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions.Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with simple channel or radial flow models. Several application examples are analyzed to demonstrate ability of this method. A wind turbine blade is also treated as industrial application. Finally, a Graphic User Interface (GUI) tool is developed so as to make easy the pre/post-processing of the simulation.
9

Contributions aux méthodes numériques pour traiter les non linéarités et les discontinuités dans les matériaux hétérogènes / Contributions to numerical methods to treat non-linearities and discontinuities in heterogeneous materials

Monteiro, Eric 11 March 2010 (has links)
Motivé par l'étude de tissus biologiques, ce travail contribue aux développements d'outils numériques permettant de prédire la réponse mécanique de matériaux hétérogènes non linéaires dans lesquels les énergies d'interfaces deviennent prépondérantes. Ainsi, une méthode d'homogénéisation multi échelle combinée à une technique de réduction de modèle basée sur la décomposition orthogonale aux valeurs propres est proposée dans un cadre thermique et hyperélastique. Les énergies d'interfaces entre les différentes phases des composites sont décrites par un modèle d'interface cohérent et prises en compte numériquement par une approche liant la méthode des éléments finis étendus et la méthode level-set. Une étude de l'étalement d'une cellule vivante entre deux lamelles fixes est ensuite réalisée. Les deux modèles utilisés pour les simulations montrent que l'assemblage cortex d'actine-membrane plasmique ne joue qu'un rôle minime dans la réponse mécanique cellulaire / Motivated by the study of biological tissues, this work contributes to developing numerical tools to predict the mechanical response of nonlinear heterogeneous materials in which the energies of interfaces can no longer be ignored. First, a computational homogenization strategy combined with a model reduction technique based on the proper orthogonal decomposition is implemented in the cases of large elastic deformations and highly nonlinear conduction. The interfaces between the different phases of a composite are described by means of a coherent interface model and taken into account numerically by an extended finite element method in tandem with a level-set technique. Finally, experimental results of single cell spreading between two fixed parallel microplates are exploited through finite element modelling. Our two models show that the bilayer membrane and the actin cortex do not play a significant role in the cell mechanical response
10

Modellierung, Simulation und Homogenisierung des magnetomechanischen Feldproblems für magnetorheologische Elastomere

Lux, Christian 06 December 2016 (has links) (PDF)
Die aus magnetisierbaren Partikeln und einer elastischen Matrix bestehenden magnetorheologischen Elastomere sind ein Verbundwerkstoff mit magnetisch steuerbaren Eigenschaften. In der vorliegenden Arbeit wird ein kontinuumsmechanisches Modell zur Beschreibung der relevanten physikalischen Phänomene bereitgestellt. Die Lösung zugehöriger Randwertaufgaben basiert auf der erweiterten Finiten Elemente Methode. Zur Verifikation und Validierung des Modells werden analytische Referenzlösungen zweidimensionaler Problemstellungen herangezogen. Die Homogenisierung des magnetomechanischen Feldproblems erfolgt mit kleinen Deformationen. Aus einer Volumenmittelung der lokal inhomogenen Feldverteilungen ergeben sich makroskopische Variablen. Auf Basis dieser Größen lassen sich Aussagen über das effektive Verhalten ableiten. Somit ist neben den rein magnetischen und mechanischen Materialeigenschaften das gekoppelte magnetomechanische Verhalten analysierbar. Darunter sind aktuatorische Spannungen, magnetostriktive Dehnungen und der magnetorheologische Effekt zu verstehen. / Magnetorheological elastomers are composite materials consisting of magnetizable particles embedded in an elastic matrix. Their properties can be altered by an external magnetic field. In this work a continuum based formulation is applied to model relevant physical phenomena. Boundary value problems are solved by the extended Finite Element Method. For the purposes of verification and validation analytic solutions are provided. The homogenization of the magnetomechanical field problem is limited to small deformations. Macroscopic variables are obtained by volume averaging. In addition to macroscopic magnetic and mechanical properties the effective behavior is analyzed in terms of actuatoric stresses, magnetostrictive strains and the magnetorheological effect.

Page generated in 0.0128 seconds