• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nano-patterned photoactive surfaces

Frédérich, Nadia 13 December 2006 (has links)
Molecular assemblies capable of harvesting light and using the absorbed energy have attracted great interest in recent years because of their applicability in such domains as light emitting diodes, fluorescent labelling of biological molecules, and photonic devices. Nature has also developed in plants and photosynthetic bacteria several examples of photonic nanostructures which guide light over small distances and harvest light energy, using resonance energy transfer (RET). For some time, researchers have tried to mimic the spatial arrangements of high energy transfer efficiency found in Nature. Recent progress in the application, creation and manipulation of individual or small groups of molecules are opening new perspectives for further developments in this field. These recent advances are commonly considered to lie at the root of what is being called "Nanotechnology". Although the definitions of nanotechnology are diverse, it is commonly admitted that this new domain of Science draws ideas and concepts from disciplines including engineering, physics, chemistry, biology, mathematics and computer science. The central dogma of the “bottom up” version of nanotechnology is the notion of self-assembly, which is the spontaneous assembly of materials into predetermined ordered structures or complexes. Presented here is an example from a field of nanotechnology that utilizes self-assembly onto nano-patterned surfaces to generate nano-structured systems and devices. More precisely, in the present case we target photo-active devices based on Fluorescence Resonance Energy Transfer (FRET), taking inspiration from photosynthetic light harvesting systems, where concentric nanometric rings of chromophores funnel light energy to a reaction center. Here, we synthesize nano-patterned chromophore surfaces which are able to collect light energy over a large surface and funnel it in regions of ~100 nm size. Our results indicate that an efficient collection and transfer of light energy can be performed by properly nano-designed surfaces, which may have practical consequences for the fabrication of light-powered active nano-devices.
2

Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

Diaz, Edwin Hernandez 06 1900 (has links)
Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.
3

In Vitro Bone Tissue Engineering On Patterned Biodegradable Polyester Blends

Kenar, Halime 01 September 2003 (has links) (PDF)
This study aimed at guiding osteoblast cells on biodegradable polymer carriers with well-defined surface microtopography and chemistry, and investigating the effect of cell alignment on osteoblast phenotype expression. A blend of two different polyesters, one being natural in origin (PHBV) and the other synthetic (P(L/DL)LA), was used to form a film with parallel macro- (250 &micro / m wide) or microgrooves (27 &micro / m wide) on its surface, by solvent casting on patterned templates. The micropatterned Si template was produced by photolithography, while the Teflo macropatterned template was lathe cut. Fibrinogen (Fb) was adsorbed or immobilized via epichlorohydrin spacer/crosslinker on the film surfaces to enhance cell attachment by increasing the surface hydrophilicity and by providing RGD amino acid sequence for integrin binding. Surface hydrophilicity was assessed by water contact angle measurements. Adsorption of Fb caused an increase in hydrophilicity, while the opposite was achieved with its covalent immobilization. Fb was homogeneously immobilized throughout the whole micropatterned film surface with amount of 153.1 &plusmn / 42.4 g Fb/cm2, determined with the Bradford assay, while it was adsorbed within the grooves of the micropattern. Surface characteristics of the films were studied with Scanning Electron (SEM) and Light microscopy. Osteoblast cells derived from rat bone marrow were seeded on the polymeric films with different surface topography and chemistry and were grown for one and three weeks. Osteoblast proliferation on the films was determined with Cell Titer 96 TM Non-Radioactive Cell Proliferation (MTS) test. Alkaline Phosphatase (ALP) assay and tetracycline labelling of mineralized matrix were carried out to determine osteoblast phenotype expression on different surfaces. SEM and fluorescence microscopy were used to evaluate the cell alignment. Osteoblasts on the micropatterned films with adsorbed Fb aligned along the groove axis with a mean deviation angle of 13.1o, while on the unpatterned films deviation from horizontal axis was 63.2o and cells were randomly distributed. Cell alignment did not affect cell proliferation. However, the highest ALP specific activity and the most homogeneous mineral distribution were obtained on the Fb adsorbed micropatterned films.
4

Wetting, Adhesion and friction investigations of hetero-chemical smooth patterned surfaces / Surfaces texturées hétérochimiques pour le contrôle des propriétés d'adhésion et de frottement

Ben Ali, Imed Eddine 28 November 2017 (has links)
Les surfaces texturées sont devenues, ces dernières années, des substrats de choix pour de nombreuses applications. En effet, la texturation des surfaces, de l'échelle nanométrique à l'échelle microscopique, permet d'accroître les propriétés d'adhérence ou de renforcer la résistance mécanique intrinsèque. Dans ce travail de thèse nous proposons une étude sur l'influence des textures chimiques sur le comportement tribologique, adhésif et sur la mouillabilité des substrats. Dans le premier chapitre, on propose une stratégie de micro-texturation des surfaces basées sur la technique de microcontact-printing et le greffage de chaînes de polymères de géométries/formes contrôlées. En outre, on a notamment étudié de manière approfondie la mouillabilité des surfaces texturées afin de comprendre les effets de diminution de taille des textures sur le comportement adhésif. Dans les expériences d'adhésion et frottement, un dispositif de type JKR (pour Johnson, Kendall et Roberts), une machine de frottement et une FFM ont été utilisés permettant d'observer le contact entre une sphère élastique et une pointe rigide avec un plan texturé tout en contrôlant la force entre les surfaces. En outre l'utilisation de ces différentes approches ne nous a pas finalement donné des explications satisfaisantes sur les mécanismes agissant sur les phénomènes interfaciaux. De ce fait, l'utilisation du démouillage de films minces de PS et de PDMS sur des surfaces texturées nous as permis de suivre l'évolution de l'instabilité du bourrelet à l'interface. Enfin, dans le dernier chapitre, nous avons étudier les différents aspects prédominants des phénomènes interfaciaux sur des surfaces homogènes / Micro and Nanoscale surface patterns are considered as potential templates and building blocks for Micro/nanotechnology. As for materials in general, these micro /nano-scale surface structures have been of increasing research interest in recent years, due to their unique properties. They are expected to exhibit novel and significantly improved physical, chemical, mechanical and other properties, as well as to offer opportunities for manifestation of new phenomena and processes. In the present PhD work, we propose a multiple scale analysis of the adhesion, friction and wetting behaviors for different patterned interfaces. In a first chapter, we developed a general methodology to design well-defined surfaces combining micro-contact printing (µCP), self-assembled monolayers (SAMs) and polymer grafting techniques. Then we study the wettability of a patterned solid surface. Where, the stick-slip regime, and the effect of the patterning at the mesoscale was investigated. Furthermore, we concentrate on the dependence of adhesion and friction between a polymer and a rigid tip on the composition of the patterned substrates using a JKR, FFM and friction machines. Intriguingly, the uses of these approaches did not provide us with a clear answer to our bewilderment. Therefore, in the third chapter, we adopted the approach of the dewetting of thin polymer film on top of patterned surfaces. We study the impact of the solid/liquid boundary condition on the evolution of the rim instability during the course of dewetting. The last chapter details the investigation of the predominant aspect between the chemistry introduced on the surface and the mechanical proprieties of the substrate
5

Controlled Transfer Of Macroscopically Organized Nanoscopically Patterned Sub–10 nm Features onto 2D Crystalline and Amorphous Materials

Tyson C Davis (9121889) 05 August 2020 (has links)
<div>Surface level molecules act as an interface that mediates between the surface and the environment. In this way, interfacial molecules are responsible for conferring characteristics of relevance to many modern material science problems, such as electrical conductivity and wettability. For many applications, such as organic photovoltaics and nanoelectronics, macroscopic placement of chemical patterns at the sub-10 nm must be achieved to advance next generation device applications.</div><div><br></div><div>In the work presented here, we show that sub-10 nm orthogonal features can be prepared by translating the building principles of the lipid bilayer into striped phase lipids on 2D materials (e.g. highly ordered pyrolytic graphite (HOPG), MoS2). Macroscopic patterning of these nanoscopic elements is achieved via Langmuir Schafer deposition of polymerizable diyne amphiphiles. On the Langmuir trough, amphiphiles at the air water interface are ordered into features that can be observed on the macroscale using Brewster angle microscopy. Upon contact of the 2D material with the air-water interface the macroscopic pattern on the trough is transferred to the 2D material creating a macroscopic pattern consisting of sub-10 nm orthogonal chemistries. We also show here how hierarchical ordering can be accomplished via noncovalent microcontact printing of amphiphiles onto 2D materials. Microcontact printing allows a greater measure of control over the placement and clustering of interfacial molecules.</div><div><br></div><div>The alkyl chain/surface enthalpy has a great deal of influence over the ordering of amphiphiles at the sub-nm scale. Here, we examine this influence by depositing diyne amphiphiles onto MoS2 which has a weaker alkyl adsorption enthalpy compared to HOPG. We found that dual-chain amphiphiles deposited on MoS2 adopt a geometry that maximized the molecule-molecule interaction compared to the geometry adopted on HOPG.</div><div><br></div><div>Finally, we show how the hierarchical pattern of diyne amphiphiles can be transferred off of the 2D material onto an amorphous material. This is done by reacting the amorphous material with the conjugated backbone of the diyne moiety through a hydrosilylation reaction to exfoliate the film from the 2D crystalline material. The resulting polymer ‘skin’ has many applications were controlling interfacial properties of an amorphous material is important.</div>
6

Direct laser interference patterning for decreased bacterial attachment

Guenther, Denise, Valle, Jaoine, Burgui, Saioa, Gil, Carmen, Solano, Cristina, Toledo-Arana, Alejandro, Helbig, Ralf, Werner, Carsten, Lasa, Inigo, Lasagni, Andrés F. 06 August 2019 (has links)
In the past 15 years, many efforts were made to create functionalized artificial surfaces showing special anti-bacterial and anti-biofouling properties. Thereby, the topography of medical relevant materials plays an important role. However, the targeted fabrication of promising surface structures like hole-, lamella- and pyramid-like patterns with feature sizes in the sub-micrometer range in a one-step process is still a challenge. Optical and e-beam lithography, molding and selfassembly layers show a great potential to design topographies for this purpose. At the same time, most of these techniques are based on sequential processes, require masks or molds and thus are very device relevant and time consuming. In this work, we present the Direct Laser Interference Patterning (DLIP) technology as a capable method for the fast, flexible and direct fabrication of periodic micrometer- and submicrometer structures. This method offers the possibility to equip large plain areas and curved devices with 1D, 2D and 3D patterns. Simple 1D (e.g. lines) and complex 3D (e.g. lamella, pillars) patterns with periodic distances from 0.5 μm to 5 μm were fabricated on polymeric materials (polyimide, polystyrene). Subsequently, we characterized the adhesion behavior of Staphylococcus epidermidis and S. aureus bacteria under in vitro and in vivo conditions. The results revealed that the topographies have a significant impact on bacteria adhesion. On the one side, one-dimensional line-like structures especially with dimensions of the bacteria enhanced microbe attachment. While on the other hand, complex three-dimensional patterns prevented biofilm formation even after implantation and contamination in living organisms.
7

Tailoring Surfaces to improve Biomaterials performance: piCVD & iCVD approaches

Montero Suárez, Laura 06 September 2012 (has links)
S’han dipositat capes primes d’hidrogel per tal de modificar les propietats superficials i millorar el comportament dels biomaterials. Dues de les tècniques de deposició química en fase vapor més comunes s’han estudiat per poder dur a terme aquestes modificacions. La deposició química foto-iniciada en fase vapor (piCVD) és un mètode simple, ràpid i no agressiu que permet depositari films d’hidrogel. És un mètode que s’inicia a la superfície de la mostra i que permet recobrir de manera homogènia superfícies tridimensionals com és el cas de les micro-partícules. El piCVD ofereix un ventall molt ampli d’hidrogels amb capacitat d’absorbir aigua, incorporant co-monòmers amb diferents propietats. Els hidrogels poden ser dissenyats perquè la reactivitat es localitzi a nivell superficial, millorant d’aquesta manera la funcionalització química dels hidrogels. Tanmateix, un nou mètode s’ha utilitzat per micro-estructurar les superfícies durant la deposició via piCVD per obtenir hidrogels amb comportaments especials. Els hidrogels termo-sensibles s’han obtingut via deposició química iniciada en fase vapor (iCVD). S’ha desenvolupat una llibreria d’hidrogels termo-sensibles, els quals exhibeixen una temperatura de transició molt marcada. La microbalança de quars amb dissipació (QCM-D) s’ha fet servir per analitzar la transició d’aquests films. La combinació de les propietats que ofereixen els films termo-sensibles dona la possibilitat de dissenyar una plataforma per prevenir la formació de biofilms. / Se han depositado capas delgadas de hidrogel para lamodificación superficial y mejora del comportamiento de los biomateriales. Dos de las técnicasmás comunes de deposición química en fase vapor se han estudiado para llevar a cabo estas modificaciones. La deposición química foto-iniciada en fase vapor (piCVD) es un método simple, rápido y no agresivo que permite depositar films de hidrogel. Es un método que se inicia en la superficie de la muestra y que permite recubrir de manera homogénea superficies tridimensionales como es el caso de las micro-partículas. El piCVD ofrece un abanico muy amplio de hidrogeles con capacidad de absorber agua, incorporando co-monomeros con diferentes propiedades. Los hidrogeles se pueden diseñar para que la reactividad se localice a nivel superficial, mejorando de esta manera la funcionalización química de los hidrogeles. Así mismo, un nuevo método se ha utilizado para micro-estructurar las superficies durante la deposición vía piCVD para obtener hidrogeles con comportamientos especiales. Los hidrogeles termo-sensibles se han obtenido vía deposición química iniciada en fase vapor (iCVD). Se ha desarrollado una librería de hidrogeles termo-sensibles, los cuales exhiben una temperatura de transición muy marcada. La microbalanza de cuarzo con disipación (QCM-D) se ha utilizado para analizar la transición de este film. La combinación de las propiedades que ofrecen los films termo-sensibles da la posibilidad de diseñar una plataforma para prevenir la formación de biofilms. / Thin hydrogel films have been deposited to modify surface properties and improve biomaterials performance. Two of the most common chemical vapor deposition techniques have been studied to carry out these modifications. Photo-initiated chemical vapor deposition piCVD has been developed as a simple, not aggressive and easy method for the deposition of thin hydrogel films. This method follows a versatile surface-driven reaction process that allows homogeneous coating of both 2D and 3D geometries, such as microspheres. piCVD offers the possibility to fabricate a wide range of swellable thin films, incorporating co-monomers with different properties, such as amine-reactivity, suitable for further modification. The hydrogels can be designed by nano-confining the reactivity to the near surface region, improving the chemical functionality of hydrogels. In addition, a new method to create micro-patterned surfaces can be applied during piCVD deposition to design surfaces having special behavior. Thermo-responsive thin hydrogel films have also been obtained via initiated chemical vapor deposition (iCVD). A library of thermo-sensitive films exhibiting controlled lower critical solution temperatures (LCST) has been generated. Quartz crystal microbalance with dissipation analysis has been used to analyze the phase-transition of these films. The intrinsic properties of thermo-sensitive hydrogels, such as tunable surface hydrophilicity or release of film-entrapped molecules, open the possibility to design systems for controlling biofilm formation.

Page generated in 0.0598 seconds