Return to search

Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs

Le but de cette thèse est d'obtenir des résultats sur la cohomologie rationnelle du groupe linéaire. Nous attaquons ce problème en le transposant dans la catégorie des bifoncteurs polynomiaux, dans laquelle les calculs sont plus aisés. <br /><br />Nous rappelons dans un premier temps la structure de la catégorie des bifoncteurs polynomiaux sur un anneau commutatif quelconque. Nous démontrons que la cohomologie des bifoncteurs calcule la cohomologie rationnelle du groupe linéaire sur un anneau quelconque (ce résultat n'était auparavant connu que sur un corps). Puis nous développons des techniques générales pour le calcul de la cohomologie des bifoncteurs. Nous introduisons notamment de nouveaux outils efficaces pour étudier la torsion de Frobenius en caractéristique p. Enfin, nous appliquons ces méthodes à des familles explicites de bifoncteurs. Nous obtenons ainsi de nouveaux résultats (par exemple des séries de Poincaré) sur la cohomologie rationnelle à valeur dans des représentations classiques, telles que les puissances symétriques et divisées des twists de l'algèbre de Lie du groupe linéaire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00289942
Date26 May 2008
CreatorsTouzé, Antoine
PublisherUniversité de Nantes
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0009 seconds