L'objet de ce travail est de généraliser au cas des variétés feuilletées par variétés complexes la théorie des déformations de variétés complexes compactes développée notamment par les travaux de Kodaira et Spencer vers la fi n des années cinquante. Après avoir défni la notion de famille de déformations de variétés feuilletées par variétés complexes compactes, nous avons pu obtenir un analogue des théorèmes de rigidité, de complétude et d'existence dans notre cadre. Les méthodes de démonstration usant de la théorie du potentiel ne sont pas généralisables car les opérateurs différentiels considérés ici ne sont plus elliptiques. On se tourne alors vers des techniques de séries majorantes pour obtenir ces résultats, en particulier pour le théorème d'existence qui généralise la démonstration faite par Forster et Knorr en 1974. / The aim of this work is to generalise the study of deformations of complex manifolds by kodaira and Spencer to the case of manifolds foliated by complex manifolds. After defning the notion of family of deformations of compact manifold foliated by complex manifolds, we prove a theorem of rigidity, one of completeness and one of existence in our framework. We can not apply one potential theory here, so we have to use power series technics.
Identifer | oai:union.ndltd.org:theses.fr/2010DIJOS058 |
Date | 10 December 2010 |
Creators | Burel, Thomas |
Contributors | Dijon, Meersseman, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds