Return to search

Régulation biochimique et mécanique de l'assemblage de filaments d'actine par la formine / Biochemical and mechanical regulation of actin filaments assembly by formin

Pour la cellule, l’assemblage du cytosquelette d’actine joue un rôle central dans son déplacement, sa division ou sa morphogenèse. Cette réorganisation est orchestrée par des protéines régulatrices et des contraintes mécaniques. Savoir comment les combinaisons de ces actions biochimiques et physiques régulent les différentes architectures d’actine reste un véritable défi.La formine protéine est un régulateur essentiel de l’actine. Ancrée à la membrane, elle assemble les filaments d’actine (nucléation et élongation) présents dans des architectures linéaires et non branchées. La formine est impliquée notamment dans la génération de filopodes, protrusions guidant la locomotion cellulaire.Une propriété remarquable est sa capacité à suivre processivement le bout barbé d’un filament qu’elle allonge, tout en stimulant son élongation en présence de profiline. La régulation de cette processivité de la formine est encore à clarifier. C’est une caractéristique importante, intervenant dans le contrôle de la longueur des filaments, dont les connaissances sont à approfondir.L’étude de cette processivité est facilitée par l’utilisation d’un outil microfluidique novateur pour l’étude de la dynamique de multiples filaments individuels d’actine in vitro. Au sein d’une chambre en PDMS, les filaments sont ancrés à la surface par un seul bout, le reste s’alignant avec le flux. Nous pouvons précisément y changer l’environnement biochimique,tandis que la friction visqueuse sur les filaments permet d’exercer une tension contrôlée sur chacun d’entre eux.Simultanément à l’action de la formine au bout barbé, j’étudie l’effet d’autres protéines ou de la vitesse d’élongation sur sa processivité, en mesurant son taux de détachement. Par ailleurs nous pouvons reproduire l’ancrage membranaire cellulaire en attachant spécifiquement nos formines à la surface. Dans la chambre, par l’intermédiaire du filament qu’elle allonge, nous pouvons alors exercer des forces et en étudier l’effet sur la formine.Premièrement, j’ai étudié l’impact de la protéine de coiffe (CP) sur l’activité de la formine au bout barbé. La liaison de ces deux protéines aubout barbé a jusqu’ici été considérée mutuellement exclusive. Nous avons observé qu’elles peuvent toutefois se retrouver simultanément liées au bout barbé, au sein d’un complexe à courte durée de vie. Ce complexe ternaire est capable de stopper l’activité du bout barbé même si l’affinité d’une protéine est réduite par la présence de l’autre. Nous proposons qu’une compétition entre la protéine de coiffe et la formine régule la dynamique du bout barbé dans des architectures où les longueurs doivent être hautement contrôlées.J’ai ensuite étudié l’influence de divers facteurs sur la processivité. La processivité est très sensible à la présence du sel et à la fraction demarquage fluorescent utilisée dans nos expériences. Nous avons également observé l’effet de la vitesse d’élongation, qui peut être modifiée en changeant la concentration en actine ou en profiline. D’une part, l’actine réduit la processivité, à n’importe quelle concentration de profiline. D’autre part, la concentration en profiline augmente cette processivité,indépendamment du taux d’élongation. Cela suggère qu’une incorporation de monomère diminue la processivité, tandis que la profiline, par sa présence au bout barbé, l’augmente.Enfin, la tension exercée sur les formines abaisse fortement la processivité : quelques piconewtons réduisent la processivité de plusieurs ordres de grandeurs. Cet effet, purement mécanique, prédomine sur les facteurs biochimiques. Ces résultats nous indiquent que les contraintes mécaniques de tension joueraient un rôle prédominant dans le contexte cellulaire. Cette étude nous aide à construire un modèle plus complet de l’élongation processive par les formines.En conclusion, ce projet permet de mieux comprendre le fonctionnement moléculaire de la formine, en particulier le mécanisme de l’élongation processive et de sa régulation / Actin filament assembly plays a pivotal role in cellular processes such as cell motility, morphogenis or division. Elucidating how the actin cytoskeleton is globally controlled remains a complex challenge. We know that it is orchestrated both by actin regulatory proteins and mechanical constraints.The formin protein is an essential actin regulator. Anchored to the cell membrane, it is responsible for the assembly (nucleation and elongation) of actin filaments found in linear and unbranched architectures. It is notably involved in the generation of filopodia protrusions at the leading edge of a motile cell. One important feature is that it processively tracks the barbed end of an actin filament, while stimulating its polymerization in the presence of profilin.Formin processivity and its regulation is not yet completely understood. As an important factor determining the length of the resulting filament, it must be investigated further.A perfect assay to look at formin processivity in vitro is an innovative microfuidics assay coupled to TIRF microscopy, pioneered by the team, to simultaneously track tens of individual filaments. In a designed chamber,filaments are anchored to the surface by one end, and aligned with the solution flow. We can precisely control the biochemical environment of the filaments. Moreover, we can exert and modulate forces on filaments, due to the viscous drag of flowing solutions. By varying chemical conditions during formin action at the barbed end, I investigated how others proteins or the elongation rate can modulate formin processivity, by looking at the detachment rate of formins.Moreover, we can mimic the membrane anchoring in the cell by specifically attaching formins at the surface. In our chamber, through the filament they elongate, we can apply force to formins.In complement to biochemical studies, we then investigate the effect oftension on their processivity.I first investigated the impact of a capping protein on formin action at the barbed end. Their barbed end binding is thought to be mutually exclusive.We measured that the affinity of one protein is reduced by the presence of the other. However we observed they both can bind simultaneously the barbed end, in a transient complex, which block barbed end elongation.Competition of formin and CP would regulate barbed end dynamics in a cell situation where length is tightly controlled.I next studied formin processivity dependence on various parameters. We show that processivity is sensitive to salt and labelling fraction used in our solutions. We also looked at how processivity is affected by the elongation rate, which can either be varied by actin or profilin concentration. On one hand, actin concentration reduces processivity, at any given concentrationsof profilin. On the other hand, raising the concentration of profilin increasesprocessivity, regardless of the elongation rate. This indicates that theincorporation of actin monomers decreases processivity while in contrast,the presence of the profilin at the barbed end increases it.Moreover, tension exerted on formin was observed to largely favor its detachment. In a quantitative matter, the effect of tension prevails over anyothers biochemical factor on processivity : only a few piconewtons decreaseit by several orders of magnitude. This important effect helps us build amore complete model of processive elongation. These results indicate thatmechanical stress is likely to play an important role in a cellular context.In conclusion, this project brings insights into the molecular properties offormin and helps to decipher the mechanism of processive elongation and its regulation.

Identiferoai:union.ndltd.org:theses.fr/2017SACLS583
Date20 December 2017
CreatorsKerleau, Mikaël
ContributorsUniversité Paris-Saclay (ComUE), Romet-Lemonne, Guillaume, Jegou, Antoine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds