• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un bioréacteur de haute performance permettant la stimulation et la caractérisation mécanique à long terme des tendons de queue de rat

Viens, Mathieu January 2013 (has links)
Le Laboratoire Biométiss oeuvre dans le domaine de la mécanobiologie. Ses recherches visent à mieux comprendre l’évolution des propriétés viscoélastiques in vitro des tissus conjonctifs mous vivants sous chargement mécanique. L’outil premier de ce type de recherche in vitro se nomme bioréacteur. Il permet la mimique des sollicitations mécano-biochimiques physiologiques ou traumatiques auxquelles sont soumis les tissus in vivo ainsi que la caractérisation destructive ou non-destructive de leurs propriétés viscoélastiques. En 2007, un premier bioréacteur destiné à la stimulation et la caractérisation in vitro à long terme de tendons de queue de rat a été conçu et fabriqué par un membre de Biométiss (Huppé, 2007). L’expérience acquise avec celui-ci a permis d’acquérir une meilleure définition des besoins du laboratoire. Elle a aussi permis d’identifier certaines limitations principalement associées à la convivialité ainsi qu’à la qualité de mesure et de contrôle de ce premier bioréacteur. Il a alors été convenu que la conception d’un nouveau bioréacteur était nécessaire et préférable à la modification du premier bioréacteur. C’est ainsi qu’a pris naissance le projet de maîtrise portant sur la conception d'un bioréacteur de haute performance permettant la stimulation et la caractérisation mécanique à long terme des tendons de queue de rat. L’approche de conception inspirée des machines de haute précision et adoptée pour concevoir le bioréacteur a permis d’avoir un regard nouveau sur le bioréacteur et mettre en oeuvre plusieurs innovations importantes. Les concepts novateurs de servo-actionneur personnalisé, d’isolation vibratoire à deux niveaux ou de labyrinthe mobile, pour n’en nommer que quelques-uns, ont permis d’atteindre de hautes performances. Les fruits de ces innovations sont entre autres : - L’amélioration de la qualité de mesure et de contrôle résultant de la stimulation et de la caractérisation mécanique; - L’optimisation de la convivialité d’utilisation; - La minimisation du facteur humain sur les résultats. Finalement, l’article intitulé A Roadmap for the Design of Bioreactors in Mechanobiological Research and Engineering of Load-Bearing Tissues par Viens et al. (2011) a été rédigé à partir de l’expérience de conception vécue dans le cadre du présent projet. Il propose une approche structurée, basée sur l’analyse du cycle d’utilisation du bioréacteur et de la routine de stimulation et de caractérisation mécanique, permettant d’élaborer un cahier des charges fonctionnelles complet et exact. Il est espéré que cet article permettra de guider le chercheur à travers cette étape décisive et ardue du processus de conception d’un bioréacteur.
2

Étude de l'évolution de l'état de tendons soumis à des stimulations mécaniques

Cousineau-Pelletier, Paule January 2009 (has links)
Les tendons sont des tissus qui réagissent aux stimuli mécaniques externes. Des stimulations mécaniques inadéquates imposées au tendon engendrent des lésions dans le tendon. Plusieurs études ont été réalisées pour comprendre la mécanobiologie des tendons. Celles-ci ne sont malheureusement pas complètes. Le but de ce projet de maîtrise était donc d'approfondir nos connaissances des mécanismes régissant l'évolution du tendon suite à certaines stimulations mécaniques. Précisément, l'objectif de cette maîtrise était de découpler les trois modes d'évolution (l'amélioration, la dégradation mécanique et la dégradation enzymatique de la matrice extracellulaire) pour deux types de chargement: une sous-stimulation et une sur-stimulation mécanique. Pour chacune de ces deux conditions de stimulation, nous avons étudié la variation de l'état du tendon pour trois types de condition de culture du tendon: (1) D-PBS avec inhibiteurs de protéases, (2) milieu de culture avec inhibiteurs de protéases et (3) milieu de culture sans inhibiteurs de protéases. Cela a permis de mettre en lumière les trois modes de d'évolution individuellement. En effet, l'évolution de l'état du tendon peut être approximée par l'équation suivante: évolution = DM - DE + A où DM = dégradation mécanique, DE = dégradation enzymatique et A = amélioration. Avant de pouvoir effectuer ces expériences, nous avons élaboré des protocoles de caractérisation et de stimulation mécanique minutieux. Ces protocoles devaient assurer un contrôle des conditions de culture (ex.: contamination, condition de culture stable,...), des stimulations et des caractérisations mécaniques (ex.: changement du milieu de culture, test de relaxation, test dynamique,...). De cette façon, nous nous assurions que les paramètres de notre expérience n'influençaient pas nos résultats. L'étude, a principalement montré que la contribution relative des trois mécanismes d'évolution diffère selon le type de stimulation imposée.
3

The effect of tissue mechanical characterization and stimulation parameters on live tissue mechanobiological progression with regard to viscoelasticity and viscoplasticity / L'effet de la caractérisation mécanique et des paramètres de stimulation des tissus sur leur évolution mécanobiologique en regard avec la viscoélasticité et la viscoplasticité

Jafari, Leila January 2012 (has links)
Tissue characterization is a major step in tissue mechanobiological studies. By characterization methods, tissue quality i.e. the combination of tissue structural, compositional and mechanical properties, is determined. This research focuses on mechanical characterization methods. Among all mechanical characterization methods, we propose those ones which are: 1) Non-destructive, (i.e. that reserves the capability of doing other characterization tests at the end of mechanical test; and, 2) In-line, (that enables tissue progression observation during experiment, and without transferring the specimen from one apparatus to another). However, in-line characterization raises the question of whether conducting tissue observation methods during experimentation modifies tissue progression over time. Therefore, the purpose of this study was to deepen our knowledge about the parameters which could affect tissue quality during mechanical testing. This requires a better understanding of viscoelasticity and viscoplasticity, two key behaviors of tissue, affecting the impact of these parameters (e.g. tissue quality, stimulation parameters) on the response of live tissue to biophysical stimuli. Thus, the objectives of this study were: 1. To review the literature to find information about two mechanical behaviors of tissue i.e. viscoelasticity and viscoplasticity, and the way they affect tissue properties 2. To investigate whether diagnostic tests, as mechanical characterization tests to observe tissue properties, affect tissue progression We explain that viscoelasticity and viscoplasticity of tissue originate from structure and components of the extracellular matrix. We also describe the way they affect tissue dynamic competition between repair, enzymatic degradation and mechanical degradation of the extracellular matrix. Moreover, we specify some tissue stimulation parameters, such as stimulation control type or stimulus history, which could affect tissue progression in response to biophysical stimuli because of viscoelasticity and viscoplasticity. Moreover, by conducting a series of 3-day experiments on frshly extracted tendons, we investigated whether applying "stress relaxation" tests at physiological amplitudes affects tissue response. We divided the tendons into two groups based on the characterization protocol (24 and 0 stress relaxation tests each day), and compared the progression of these groups over time. The stress relaxation tests at physiological amplitude modified tissue response to mechanical stimuli in vitro . In general, the modulus increased for 0 stress relaxation tests, while it first decreased and then increased slightly for 24 stress relaxation tests each day. The difference of mechanical properties between the two groups was significant. Therefore, applying stress relaxation tests at physiological amplitude during the rest periods between mechanical stimuli can affect live tissue progression over time. Therefore, it is essential to take into account the viscoelasticity and viscoplasticity of tissue while developing a stimulation protocol for bioreactor studies or clinical applications.
4

Impact des contraintes physiques sur la maturation des mégacaryocytes : rôle de la rigidité de l'environnement / Impact of physical constraints on megakaryocytes’ maturation : role of the environmental stiffness

Aguilar, Alicia 10 April 2017 (has links)
La mégacaryopoïèse regroupe l’ensemble des processus de différenciation et de maturation des mégacaryocytes (MKs) dans le but de produire des plaquettes capables d’arrêter les saignements. Or ces mécanismes sont mal connus. Afin de mieux les comprendre, nous avons mimé l’environnement médullaire in vitro, en 3D à l’aide d’un hydrogel de rigidité comparable à celle de la moelle osseuse. Dans cette étude nous avons: i) caractérisé le comportement physique de l’hydrogel de méthylcellulose et mis au point la culture de progéniteurs mégacaryocytaires dans ce système, ii) montré la capacité du MK à ressentir les contraintes physiques de son environnement, ainsi que, iii) l’impact de ces contraintes sur la maturation des MKs et la génération des proplaquettes, et enfin, iv) mis en évidence l’existence d’une réponse cellulaire des MKs à la rigidité. Les MKs sont « mécanosensibles », c’est-à-dire capables de ressentir les modifications physiques de leur environnement et de s’y adapter. L’activation de voies de mécanotransduction (dont MKL1) et la réorganisation du cytosquelette en réponse aux contraintes physiques extracellulaires favorisent la maturation des MKs, en termes de ploïdie, d’ultrastructure et in fine de génération de proplaquettes. / Megakaryopoiesis is the process of differentiation and maturation of megakaryocytes (MKs) in the aim to produce platelets able to prevent hemorrhages. These mechanisms are not well known. To better understand the process of platelet formation, we mimicked the medullar microenvironment in vitro, in 3D using hydrogel of stiffness comparable to the bone marrow. In this study we: i) characterized the physical properties of the hydrogel and design the culture of hematopoietic progenitors in this system, ii) showed the MKs ability to feel the physical constraints of their environment, then iii) showed the impact of these constraints on the MK maturation and proplatelet generation, and finally iv) highlighted the MK response to stiffness. MKs are “mecanosensitives”, being able to feel and to adapt to the physicals modifications of the environment. The activation of mechanotransduction pathways (including MKL1) and the cytoskeleton reorganization in response to extracellular physical constraints improves MK maturation, in terms of ploïdy, ultrastructure and ultimately proplatelet generation.
5

Link between signalling pathways, cell cycle and mechanical forces during foetal myogenesis / Lien entre les voies de signalisation, le cycle cellulaire et les forces mécaniques au cours de la myogenèse fœtal

Esteves De Lima, Joana 28 September 2015 (has links)
La myogenèse fœtale repose sur les cellules progénitrices musculaires PAX7+ qui assurent la croissance musculaire au cours du développement et qui sont à l’origine des cellules satellites. Nous avons cherché à interpréter les signaux régulant la myogenèse fœtale et leur lien avec le cycle cellulaire. Nous avons effectué une analyse exhaustive du cycle cellulaire des cellules myogéniques au cours de la myogenèse fœtale. Nous avons aussi identifié que les cellules PAX7+ progressant dans le cycle cellulaire (phases S, G2, et M) sont régionalisées aux extrémités des muscles. Les voies de signalisation BMP et NOTCH régulent positivement le nombre de cellules PAX7+ pendant le développement fœtal mais ont un effet différent sur la différenciation musculaire. Nous avons montré que les voies de signalisation BMP ou NOTCH augmentent le nombre de cellules PAX7+ de manière indépendante. Nous avons aussi identifié des interactions antagonistes entre ces deux voies lors de la différenciation musculaire. Nous avons testé l'importance de la contraction musculaire pendant la myogenèse fœtale chez l’embryon de poulet. Le blocage des contractions musculaires mime un phénotype de perte de fonction NOTCH, à savoir une diminution du nombre de cellules progénitrices musculaires avec une tendance à la différenciation musculaire. Nous avons aussi montré que les forces mécaniques produites par les contractions musculaires sont détectées par le co-activateur transcriptionnel YAP1 qui régule l'expression d’un ligand de NOTCH au sein des fibres musculaires, qui à son tour va maintenir le pool de cellules progénitrices musculaires fœtaux. / Foetal myogenesis relies on PAX7+ muscle progenitors that provide the source of cells for muscle growth during development and for the generation of the satellite cell pool. We aimed to decipher the signals that regulate the balance between myogenic differentiation and proliferation. We performed an exhaustive analysis of the cell cycle phases of myogenic cells during foetal myogenesis. I defined that PAX7+ cells in the S/G2/M phases were enriched at the contact points to the tendons. BMP and NOTCH signals increase the number of PAX7+ cells during foetal development, but affect differentiation in a positive and negative manner, respectively. I revealed that BMP and NOTCH increase the number of PAX7+ cells independently of each other. However, they act antagonistically during differentiation. Thus, the interplay between NOTCH and BMP signalling differs in proliferation and differentiation. Because muscle is a mechanical tissue, we tested the importance of muscle contraction for foetal myogenesis in chick embryos. I found that the block of muscle contraction during foetal myogenesis mimicked a NOTCH loss-of-function, i.e. decreased the number of foetal muscle progenitors and shifted the balance between proliferation and differentiation towards a differentiation fate. Mechanical forces provided by muscle contractions are sensed in myonuclei by the transcriptional co-activator YAP1 that regulates expression of the NOTCH ligand JAGGED2 in muscle fibres. This JAGGED2 signal keeps the muscle progenitors in an undifferentiated state and suppresses differentiation.
6

Régulation biochimique et mécanique de l'assemblage de filaments d'actine par la formine / Biochemical and mechanical regulation of actin filaments assembly by formin

Kerleau, Mikaël 20 December 2017 (has links)
Pour la cellule, l’assemblage du cytosquelette d’actine joue un rôle central dans son déplacement, sa division ou sa morphogenèse. Cette réorganisation est orchestrée par des protéines régulatrices et des contraintes mécaniques. Savoir comment les combinaisons de ces actions biochimiques et physiques régulent les différentes architectures d’actine reste un véritable défi.La formine protéine est un régulateur essentiel de l’actine. Ancrée à la membrane, elle assemble les filaments d’actine (nucléation et élongation) présents dans des architectures linéaires et non branchées. La formine est impliquée notamment dans la génération de filopodes, protrusions guidant la locomotion cellulaire.Une propriété remarquable est sa capacité à suivre processivement le bout barbé d’un filament qu’elle allonge, tout en stimulant son élongation en présence de profiline. La régulation de cette processivité de la formine est encore à clarifier. C’est une caractéristique importante, intervenant dans le contrôle de la longueur des filaments, dont les connaissances sont à approfondir.L’étude de cette processivité est facilitée par l’utilisation d’un outil microfluidique novateur pour l’étude de la dynamique de multiples filaments individuels d’actine in vitro. Au sein d’une chambre en PDMS, les filaments sont ancrés à la surface par un seul bout, le reste s’alignant avec le flux. Nous pouvons précisément y changer l’environnement biochimique,tandis que la friction visqueuse sur les filaments permet d’exercer une tension contrôlée sur chacun d’entre eux.Simultanément à l’action de la formine au bout barbé, j’étudie l’effet d’autres protéines ou de la vitesse d’élongation sur sa processivité, en mesurant son taux de détachement. Par ailleurs nous pouvons reproduire l’ancrage membranaire cellulaire en attachant spécifiquement nos formines à la surface. Dans la chambre, par l’intermédiaire du filament qu’elle allonge, nous pouvons alors exercer des forces et en étudier l’effet sur la formine.Premièrement, j’ai étudié l’impact de la protéine de coiffe (CP) sur l’activité de la formine au bout barbé. La liaison de ces deux protéines aubout barbé a jusqu’ici été considérée mutuellement exclusive. Nous avons observé qu’elles peuvent toutefois se retrouver simultanément liées au bout barbé, au sein d’un complexe à courte durée de vie. Ce complexe ternaire est capable de stopper l’activité du bout barbé même si l’affinité d’une protéine est réduite par la présence de l’autre. Nous proposons qu’une compétition entre la protéine de coiffe et la formine régule la dynamique du bout barbé dans des architectures où les longueurs doivent être hautement contrôlées.J’ai ensuite étudié l’influence de divers facteurs sur la processivité. La processivité est très sensible à la présence du sel et à la fraction demarquage fluorescent utilisée dans nos expériences. Nous avons également observé l’effet de la vitesse d’élongation, qui peut être modifiée en changeant la concentration en actine ou en profiline. D’une part, l’actine réduit la processivité, à n’importe quelle concentration de profiline. D’autre part, la concentration en profiline augmente cette processivité,indépendamment du taux d’élongation. Cela suggère qu’une incorporation de monomère diminue la processivité, tandis que la profiline, par sa présence au bout barbé, l’augmente.Enfin, la tension exercée sur les formines abaisse fortement la processivité : quelques piconewtons réduisent la processivité de plusieurs ordres de grandeurs. Cet effet, purement mécanique, prédomine sur les facteurs biochimiques. Ces résultats nous indiquent que les contraintes mécaniques de tension joueraient un rôle prédominant dans le contexte cellulaire. Cette étude nous aide à construire un modèle plus complet de l’élongation processive par les formines.En conclusion, ce projet permet de mieux comprendre le fonctionnement moléculaire de la formine, en particulier le mécanisme de l’élongation processive et de sa régulation / Actin filament assembly plays a pivotal role in cellular processes such as cell motility, morphogenis or division. Elucidating how the actin cytoskeleton is globally controlled remains a complex challenge. We know that it is orchestrated both by actin regulatory proteins and mechanical constraints.The formin protein is an essential actin regulator. Anchored to the cell membrane, it is responsible for the assembly (nucleation and elongation) of actin filaments found in linear and unbranched architectures. It is notably involved in the generation of filopodia protrusions at the leading edge of a motile cell. One important feature is that it processively tracks the barbed end of an actin filament, while stimulating its polymerization in the presence of profilin.Formin processivity and its regulation is not yet completely understood. As an important factor determining the length of the resulting filament, it must be investigated further.A perfect assay to look at formin processivity in vitro is an innovative microfuidics assay coupled to TIRF microscopy, pioneered by the team, to simultaneously track tens of individual filaments. In a designed chamber,filaments are anchored to the surface by one end, and aligned with the solution flow. We can precisely control the biochemical environment of the filaments. Moreover, we can exert and modulate forces on filaments, due to the viscous drag of flowing solutions. By varying chemical conditions during formin action at the barbed end, I investigated how others proteins or the elongation rate can modulate formin processivity, by looking at the detachment rate of formins.Moreover, we can mimic the membrane anchoring in the cell by specifically attaching formins at the surface. In our chamber, through the filament they elongate, we can apply force to formins.In complement to biochemical studies, we then investigate the effect oftension on their processivity.I first investigated the impact of a capping protein on formin action at the barbed end. Their barbed end binding is thought to be mutually exclusive.We measured that the affinity of one protein is reduced by the presence of the other. However we observed they both can bind simultaneously the barbed end, in a transient complex, which block barbed end elongation.Competition of formin and CP would regulate barbed end dynamics in a cell situation where length is tightly controlled.I next studied formin processivity dependence on various parameters. We show that processivity is sensitive to salt and labelling fraction used in our solutions. We also looked at how processivity is affected by the elongation rate, which can either be varied by actin or profilin concentration. On one hand, actin concentration reduces processivity, at any given concentrationsof profilin. On the other hand, raising the concentration of profilin increasesprocessivity, regardless of the elongation rate. This indicates that theincorporation of actin monomers decreases processivity while in contrast,the presence of the profilin at the barbed end increases it.Moreover, tension exerted on formin was observed to largely favor its detachment. In a quantitative matter, the effect of tension prevails over anyothers biochemical factor on processivity : only a few piconewtons decreaseit by several orders of magnitude. This important effect helps us build amore complete model of processive elongation. These results indicate thatmechanical stress is likely to play an important role in a cellular context.In conclusion, this project brings insights into the molecular properties offormin and helps to decipher the mechanism of processive elongation and its regulation.
7

Étude de l'influence du récepteur LRP-1 sur le potentiel invasif de cellules tumorales : mesures nanomécaniques et d'adhérence par microscopie à force atomique / Study of the influence of the LRP-1 receptor on the invasive potential of cancer cells : nanomechanical and adhesion measurements by atomic force microscopy

Le cigne, Anthony 01 July 2016 (has links)
Le récepteur low-density lipoprotein receptor-related protein 1 (LRP-1) est capable d’internaliser des protéases impliquées dans la progression du cancer, et constitue donc une cible thérapeutique prometteuse. Cependant, LRP-1 peut également réguler certaines protéines membranaires. Son ciblage dans une stratégie de modulation de la protéolyse pourrait donc affecter l’adhésion et la dynamique du cytosquelette. Dans ce travail, nous avons étudié l’influence de l’invalidation de LRP-1 sur des paramètres originaux corrélés au potentiel invasif de cellules cancéreuses par microscopie à force atomique (AFM). Cette invalidation induit des changements dans la dynamique d’adhérence des cellules et dans la morphologie, tels qu’un renforcement des fibres de stress et un étalement plus prononcé, causant une augmentation de la surface et de la circularité cellulaires. L’analyse des propriétés mécaniques par AFM a montré que ces différences sont acccompagnées par une augmentation du module d’Young. De plus, les mesures montrent une diminution globale de la motilité cellulaire et une perturbation de la persistance directionnelle. Une augmentation de la force d’adhésion entre cellules invalidées pour LRP-1 et une bille fonctionnalisée à la gélatine a également été observée. Enfin, nos données de spectroscopie de force enregistrées à l’aide d’une pointe fonctionnalisée par un anticorps anti-sous-unité d’intégrine β1 montrent que l’invalidation de LRP-1 modifie la dynamique des intégrines. Dans leur ensemble, nos résultats montrent que des techniques classiquement utilisées dans l’investigation de cellules cancéreuses peuvent être couplées à l’AFM pour ouvrir l’accès à des paramètres complémentaires, pouvant faciliter la discrimination entre différents degrés de potentiel invasif. / The low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells’ invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells’ adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells’ mechanical properties by AFM showed that these differences are correlated with an increase in Young’s modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies integrin dynamics. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.
8

Vers un nouveau biosubstitut pour l'ingénierie tissulaire du ligament croisé antérieur : approche biomécanique / Towards a new biosubstitute for anterior cruciate ligament tissue engineering : a biomechanical approach

Laurent, Cédric 11 September 2012 (has links)
L'ingénierie tissulaire, qui consiste à remplacer un tissu lésé par un biosubstitut constitué de cellules réparatrices ensemencées dans une matrice de support biodégradable, possède un potentiel prometteur pour la réparation du Ligament Croisé Antérieur (LCA). Or, aucune solution opérationnelle n'a encore été proposée à ce jour, notamment au vu du nombre de domaines scientifiques impliqués. Dans ce travail, nous avons dressé un cahier des charges pour la définition de cette matrice en nous appuyant sur l'état de l'art. Une matrice de support tressée multicouche constituée de fibres de P(LL85/CL15) a été imaginée, puis les outils nécessaires à sa fabrication à l'échelle du laboratoire ont été mis en place. Nous avons ensuite développé des outils numériques spécifiques permettant la modélisation de sa géométrie et de son comportement biomécanique multi-échelles, qui ont été mis à profit afin d?optimiser les caractéristiques de la matrice compte tenu du cahier des charges établi. De plus, des caractérisations biologiques ont montré que la matrice était compatible avec la culture de cellules souches, et était susceptible d?accueillir la formation d'un néo-tissu. Par ailleurs, nous avons mis en place un bioréacteur spécifique permettant d'imposer à la matrice de support des cycles de traction-torsion sous environnement contrôlé. L'utilisation des informations locales issues de la modélisation biomécanique, afin d'interpréter ou d'optimiser les résultats de culture cellulaire sous sollicitations cycliques, constitue une perspective majeure du présent travail. Notre investigation permet en outre de penser qu'un nouveau biosubstitut pour le LCA pourrait prochainement être proposé / Tissue engineering, which consists in replacing an injured tissue with a biodegradable scaffold seeded with cells, has the potential to overcome the limitations associated with current reconstructions strategies of the Anterior Cruciate Ligament (ACL). However, no relevant solution has been proposed yet, especially due to the variety of scientific fields involved in this approach. In the current study, the key requirements for the design of a new scaffold have been listed from the current state of art. A scaffold based on P(LL85/CL15) fibers arranged into a multilayer braided structure has been proposed, and the tools needed to process this scaffold have been developed. Dedicated numerical tools have been proposed in order to predict the morphological and multiscale biomechanical behavior of the scaffold. These simulation tools have enabled to optimize the scaffold geometry in order to match the selected key requirements for ACL tissue engineering. Moreover, preliminary biological assessments have shown that the scaffold was suited for the culture of stem cells and for tissue formation. In addition, a dedicated bioreactor has been developed in order to prescribe tension-torsion cycles within a controlled environment. The use of local information issued from the biomechanical simulations open large perspectives as far as the optimization of culture conditions and the understanding of mechanisms that govern the formation of a ligamentous tissue are concerned. As a conclusion, the present study is likely to enable a new solution for ACL tissue engineering to emerge in the next years
9

Influence de l'élasticité du substrat sur la plasticité de la chromatine de cellules épithéliales et sur la division de cellules tumorales / Influence of substrate elasticity on chromatic plasticity of epithelial cells and on division of tumoral cells

Rabineau, Morgane 24 September 2013 (has links)
Dans le domaine des biomatériaux, cette thèse s’intéresse à l’influence de l’élasticité du substrat sur la division et la plasticité de la chromatine de cellules épithéliales. La létalité des cellules est corrélée aux faibles rigidités des substrats. Cependant, quelques cellules tumorales SW480, incluant celles portant des anomalies de ségrégation des chromosomes, progressent en mitose. Ces anomalies seraient à l’origine de réarrangements chromosomiques, sources de nombreuses mutations. Les substrats mous conduisent à la formation d’hétérochromatine tandis que les substrats très mous induisent la nécrose des cellules PtK2. Sur ces substrats, l’euchromatine est maintenue après inhibition de HDAC, permettant aux cellules de résister à la nécrose, indépendamment de la compétence transcriptionnelle du noyau. Ces cellules s’étalent à nouveau après transfert sur un substrat rigide. Ces résultats suggèrent 1) une voie de signalisation entrante initiée par le substrat conduisant à la nécrose via la formation d’hétérochromatine 2) une voie de signalisation sortante initiée par l’euchromatine permettant la survie cellulaire. / In the biomaterials field, this PhD work is about influence of substrate elasticity on cell division and chromatin plasticity of epithelial cells. Soft substrates cause massive death.However, some SW480 tumor cells, including those bearing chromosomal segregation abnormalities progress in mitosis. These abnormalities could result in more chromosomal rearrangements, increasing mutations. Soft substrates lead to heterochromatin remodelling and very soft substrates promote necrosis of PtK2 cells. On these substrates, euchromatin could be maintained after HDAC inhibition independently of the nuclear transcriptional competence.These cells spread again after tranfer on stiff substrates. These results suggest i) outside-insignalling cascade initiated at the soft substrate surface leading to heterochromatin remodelling and ultimately necrosis, ii) inside-out signaling cascade initiated from euchromatin allowing cell to overcome necrosis on soft substrate.

Page generated in 0.4366 seconds