The proteins tyrosine kinases (PTKs) and the proteins tyrosine phosphatases (PTPs) are very important proteins implicated in the regulation of the cell cycle and numerous human diseases including cancer. VHR is a dual-specific phosphatase whose principles substrats are the MAPKs ERK and JNK. Previous studies of our laboratory showed that this phosphatase is regulated during the cell cycle. Its level is low during the G1 phase and increases during S and G2 phases to reach a top at the G2/M phases. The low level of VHR during the G1 phase is probably due to an alteration of the protein stability demonstrated by a decreased half-life (after treatment of the cell with cycloheximide). In addition, VHR deletion by RNA interference in HeLa cells induces a cell cycle arrest during G1/S and G2/M transitions [1].
In the first part of our work, we show that the dual-specificity phosphatase VHR is overexpressed in cervix cancer cell lines compared to primary keratinocytes. These cell lines are infected (HeLa, CaSki and SiHa) or not (C33 and HT3) by HPV, suggesting that VHR overexpression is HPV independent, virus which is responsible of cervix cancer. We show that VHR overexpression is associated with a differential subcellular localization. Indeed, VHR is localized in the cytoplasm of normal keratinocytes while it localizes in both cytoplasm and nucleus of the cell lines studied. This observed overexpression is not associated with an increased expression of its mRNA but with a stabilization of the protein. CHX chase showed us that VHR half life is about 2 hours in primary keratinocytes and longer than 8 hours in cervix cancer cell lines.
The TMA technique allowed us to study a large number of preneoplasic and neoplasic cervical lesions. Interestingly, we observe that VHR is significantly overexpressed in CIN III (Cervical intraepithelial Lesions III) (n=18) and in SCCs (Squamous Cell Carcinoma) (n=12) compared to normal exocols (n=16) and although in ADCs (Adenocarcinoma) (n=12) and AISs (Adenocarcinoma in situ) (n=9) compared to normal endocols (n=19). The differential subcellular localization is also observed in CIN III and SCCs compared to normal exocols but not in ADCs and AISs compared to normal endocols.
In the second part of our work, we analyzed the effect of small selectif inhibitors of VHR developped by Dr. L. Tautz from Burnham Institute in La Jolla, CA on cervical cell lines, HeLa and CaSki. We show that these small sulfonic acids induced a decreased number and a decreased proliferation of HeLa and CaSki cells. These effects are similar to those induced by RNA interference. We also show that these inhibitors induced an increased level of ERK phosphorylation. Since ERK is a specific substrat of VHR, these results suggest that the small inhibitors developped by L. Tautz et al. are specific for VHR.
Identifer | oai:union.ndltd.org:BICfB/oai:ETDULg:ULgetd-04012009-102915 |
Date | 30 April 2009 |
Creators | Henkens, Rachel |
Contributors | GIANNINI, Sandra, ALONSO, André, GEENEN, Vincent, DELVENNE, Philippe, CHARIOT, Alain, PIETTE, Jacques, MOUTSCHEN, Michel, RAHMOUNI, Souad |
Publisher | Universite de Liege |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-04012009-102915/ |
Rights | restricted, Je certifie avoir complété et signé le contrat BICTEL/e remis par le gestionnaire facultaire. |
Page generated in 0.0016 seconds