Prostaglandin E2 (PGE2), a metabolite of arachidonic acid, plays a role in water and sodium reabsorption in the collecting duct of the kidney. The collecting duct is responsible for the fine tuning of water and electrolytes. Only a small fraction of the filtered water and sodium is reabsorbed in the collecting duct, a fraction crucial to the regulation of water and electrolyte balance. This current study addresses the role of EP1, one of four PGE2 receptors, in the collecting duct. It is well documented that PGE2 inhibits sodium and water reabsorption in the collecting duct, however the exact mechanism is still debated. To determine whether the EP1 receptor mitigates AngII renal effects, an in vivo study was performed with EP1-/- mice. Global EP1-/- knockout mice were crossed with a renin overexpressing mouse line (herein denoted as “Ren”) and subjected to a high salt (HS) and low salt (LS) diet. Ren mice displayed an 11mmHg increase in systolic blood pressure (BP) on a HS diet and a decrease in BP of 14mmHg on a LS diet compared to the normal salt (NS) diet. Ren EP1-/- mice did not display a significant increase or decrease in BP on a HS or LS diet. On a LS diet, Ren EP1-/- displayed a drop in urine osmolarity (1641 mOsm/ kgH2O) vs. wild type (WT) mice (2107 mOsm/ kgH2O), consistent with increased sodium reabsorption. Narrowing in on the collecting duct, Ren EP1-/- mice had enhanced αENaC levels compared to Ren mice. In ex vivo microperfusion experiments, EP1-/- tubules show no response to PGE2 in the presence of AVP, whereas PGE2 inhibits AVP induced water reabsorption in WT mice. An increase in αENaC membrane accumulation due to EP1 gene ablation results in increased sodium reabsorption subsequently leading to a rise in BP. This contributes to the lack of salt sensitivity in EP1-/- mice. Overall, the EP1 receptor in the collecting duct represents a potential therapeutic target for the treatment of hypertension.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/36196 |
Date | January 2017 |
Creators | Eckert, David |
Contributors | Hébert, Richard L. |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds