1 |
Entwicklung eines Katalysators für die Alkinmetathese und Anwendung in der Totalsynthese von PGE2-Methylester und Epothilon CMathes, Christian. January 2001 (has links) (PDF)
Dortmund, Universiẗat, Diss., 2001.
|
2 |
Breast cancer cells and reprogramming of tumour-associated macrophages : induction of immunosuppression and progressive tumour growthAl-Sarireh, Bilal Aqeel January 2000 (has links)
No description available.
|
3 |
Role of Peroxiredoxin 6 in human melanoma / Die Funktion von Peroxiredoxin 6 im humanen MelanomSchmitt, Alexandra January 2015 (has links) (PDF)
Peroxiredoxin 6 (PRDX6) is a bifunctional enzyme comprising a peroxidase and a Ca2+-independent phospholipase (iPLA2) activity. This renders the enzyme capable of detoxifying reactive oxygen species (ROS) and of catalyzing the liberation of arachidonic acid (AA) from cellular membranes. Released AA can be further metabolized to bioactive lipids including eicosanoids, which are involved in inflammation, cell growth, differentiation, invasion and proliferation. Human melanoma cells are often characterized by imbalances in both ROS and lipid levels, which can be generated by oncogenic signaling, altered metabolism or UV irradiation.
In previous studies, a comparative proteome analysis of the Xiphophorus fish melanoma model revealed a strong upregulation of Prdx6 in benign and malignant lesions compared to healthy skin. As the Xiphophorus melanoma model displays in many respects molecular characteristics that are similar to human melanoma, I investigated the functional role of PRDX6 in human melanoma cells.
The first part of the study deals with the regulation of PRDX6 in melanocytes and human melanoma cells. I could demonstrate that the protein level of PRDX6 was strongly enhanced by the induction of the EGFR orthologue Xmrk from the Xiphophorus fish as well as the human EGFR. The upregulation of PRDX6 was further shown to be mediated in a PI3K-dependent and ROS-independent manner.
The main part of the thesis comprises the investigation of the functional role of PRDX6 in human melanoma cells as well as the analysis of the underlying mechanism. I could show that knockdown of PRDX6 enhanced the oxidative stress response and led to decreased proliferation of melanoma cells. This cell growth effect was mainly mediated by the iPLA2 activity of PRDX6. Under conditions of strongly enhanced oxidative stress, the peroxidase activity became also important for cellular proliferation. Furthermore, the anti-proliferative effect in cells with lowered PRDX6 levels was the result of reduced cellular AA content and the decrease in the activation of SRC family proteins. Similarly, supplementation with AA led to regeneration of SRC family kinase activity and to an improvement in the reduced proliferation after knockdown of PRDX6. Since AA can be further processed into the prostaglandin PGE2, which has a pro-tumorigenic function in some cancer types, I further examined whether this eicosanoid is involved in the proliferative function of PRDX6. In contrast to AA, PGE2 was not consistently required for melanoma proliferation.
In summary, I could demonstrate that PRDX6 plays a major role in AA-dependent lipid signaling in melanoma cells and thereby regulates proliferation. Interestingly, the proliferation relevant iPLA2 activity can be pharmacologically targeted, and melanoma cell growth was clearly blocked by the inhibitor BEL. Thus, I could identify the phospholipase activity of PRDX6 as a new therapeutically interesting target for melanoma treatment. / Peroxiredoxin 6 (PRDX6) ist ein bifunktionales Enzym, welches neben seiner Peroxidase-Aktivität auch eine Ca2+-unabhängige Phospholipase-Aktivität besitzt. Aufgrund dieser beiden Aktivitäten ist das Enzym in der Lage, sowohl oxidativen Stress zu bekämpfen als auch die Freisetzung von Arachidonsäure aus zellulären Membranen zu katalysieren. Freie Arachidonsäure (AA) dient der Generierung von bioaktiven Lipiden wie zum Beispiel Eicosanoiden, welche an Entzündungsreaktionen, Zellwachstum, Differenzierung, Invasion und Proliferation beteiligt sind. Humane Melanomzellen zeichnen sich oft durch ein gestörtes Gleichgewicht reaktiver Sauerstoffspezies und zellulärer Lipide aus. Dieses Ungleichgewicht kann durch onkogene Signalgebung, einen veränderten Metabolismus oder UV-Bestrahlung hervorgerufen werden.
Eine vorangegangene Proteomanalyse des Xiphophorus-Fisch-Melanommodells zeigte, dass im Vergleich zur gesunden Haut die Menge an PRDX6 in benignen und malignen Läsionen stark erhöht ist. Da das Xiphophorus-Melanommodell in vielerlei Hinsicht die molekulare Situation des humanen Melanoms wiederspiegelt, habe ich die funktionale Rolle von PRDX6 in humanen Melanomzellen untersucht.
Der erste Teil der Studie beschäftigt sich mit der Regulierung von PRDX6 in Melanozyten und humanen Melanomzellen. Ich konnte nachweisen, dass die Menge an PRDX6 Protein durch die Induktion des EGFR Orthologs Xmrk aus Xiphophorus Fischen, sowie des humanen EGFR stark erhöht wurde. Auch konnte ich zeigen, dass die Heraufregulierung von PRDX6 von der Signalgebung der PI3 Kinase, aber nicht von reaktiven Sauerstoffspezies abhängig war.
Der Hauptteil der vorliegenden Forschungsarbeit befasst sich mit der Ermittlung der funktionalen Rolle von PRDX6 in humanen Melanomzellen und der Analyse des zugrundeliegenden Mechanismus. Ich konnte nachweisen, dass ein Knockdown von PRDX6 die oxidative Stress-Antwort verstärkte und die Proliferation von Melanomzellen reduzierte. Der Effekt auf das zelluläre Wachstum wurde hierbei hauptsächlich durch die iPLA2-Aktivität von PRDX6 verursacht. Bei stark erhöhtem oxidativem Stress konnte auch eine Relevanz der Peroxidase-Aktivität für die zelluläre Proliferation nachgewiesen werden. Auch ging der anti-proliferative Effekt mit einer Abnahme zellulärer AA und der Reduktion aktiver Kinasen der SRC-Familie einher. Die Zugabe von AA zu Zellen mit PRDX6-Knockdown führte zur Regeneration der SRC-Kinase-Aktivität und konnte die Proliferation wieder verbessern. Da AA zum Prostaglandin PGE2 prozessiert werden kann, welches in einigen Krebsarten pro-tumorigene Funktionen erfüllt, untersuchte ich, ob dieses Eicosanoid auch für die proliferative Funktion von PRDX6 relevant ist. Im Gegensatz zu AA wies PGE2 jedoch keine kontinuierliche pro-proliferative Funktion auf.
Zusammenfassend konnte ich zeigen, dass PRDX6 eine entscheidende Rolle im AA- Stoffwechsel von Melanomzellen spielt und hierdurch die Proliferation reguliert. Interessanterweise ist die proliferationsrelevante iPLA2-Aktivität pharmakologisch hemmbar, und auch das Wachstum der Melanomzellen wurde durch den Inhibitor BEL deutlich inhibiert. Mit der Phospholipase-Aktivität von PRDX6 konnte ich somit einen neuen therapeutisch nutzbaren Angriffspunkt für das Melanom identifizieren.
|
4 |
Long-term effects of prostaglandin E2 on the mineralization of a clonal osteoblastic cell line (MC3T3-E1) / 骨芽細胞様細胞株(MC3T3-E1)の石灰化に対するプロスタグランジンE2長期投与の効果Kajii, Takashi 25 March 1999 (has links)
共著者あり。共著者名: Kuniaki Suzuki, Masatake Yoshikawa, Tohru Imai, Akira Matsumotob and Shinji Nakamura. Elsevier Science Ltd., Takashi Kajii, Kuniaki Suzuki, Masatake Yoshikawa, Tohru Imai, Akira Matsumotob and Shinji Nakamura, Long-term effects of prostaglandin E2 on the mineralization of a clonal osteoblastic cell line (MC3T3-E1), Archives of Oral Biology, 44(3), 1999 MAR, pp.233-241. doi:10.1016/S0003-9969(98)00120-4. Journal Website: http://intl.elsevierhealth.com/journals/arob/ / Prostaglandin (PG) E2 is thought to be a mediator of the effect of mechanical stress on bone formation, but its effects on osteoblasts have not yet been fully described. Here, the effects of the continuous application of PGE2 and indomethacin, an inhibitor of prostaglandin G/H synthase (cyclo-oxygenase), on the proliferation, differentiation and mineralization of a clonal osteoblastic cell line, MC3T3-E1, were investigated. The cells were cultured in media with either a high (1 μg/ml) or a low (1 ng/ml) concentration of PGE2, with indomethacin (1 μg/ml) and, as a control, with neither agent. The effects of PGE2 and indomethacin were assessed quantitatively. Indomethacin and a high concentration of PGE2 increased the total protein compared to the control and low-PGE2 cultures. 7 days after confluence, alkaline phosphatase (ALP) activity within the cells and extracellular matrices increased. This increase was highest with indomethacin and lowest with a high concentration of PGE2. ALP activity also increased in the medium, but only 21 days after confluence; the effects of the agents were similar to those on the cells and matrices. The accumulation of calcium, inorganic phosphate and hydroxyproline was highest with indomethacin. PGE2 production was at its maximum when the cells were at confluence and was inhibited by indomethacin. Specific [3H]PGE2 binding to the microsomal fraction of the cell was also measured to examine the expression of the PGE2 receptor. The amount of [3H]PGE2 binding per mg of protein was highest at confluence, then decreased and again increased in the mineralizing stage. These results suggest that indomethacin increases ALP activity and the accumulation of mineralized tissue in MC3T3-E1 cells, presumably by inhibiting the production of PGE2. PGE2 could signal the suppression of mineralization as early as confluence. / Hokkaido University (北海道大学) / 博士 / 歯学
|
5 |
Funktion der vier EP-Rezeptorsubtypen (EP1, EP2, EP3, EP4) im Rahmen der Prostaglandin E2-induzierten Modulation von TTX-Resistenten Natriumkänälen in kultivierter DRG-Neuronen /Schulte, Regine. January 2008 (has links)
Universiẗat, Diss.--Jena, 2008.
|
6 |
Effects of Prostaglandin E2 on Dendritic Cell functionsKrause, Petra. January 2008 (has links)
Konstanz, Univ., Diss., 2008.
|
7 |
Phänotypische Wirkung von PGE2 auf die TLR-vermittelte Ausreifung in-vitro-generierter monozytenderivierter dendritischer Zellen / Phenotypical effects of PGE2 on the TLR-mediated maturation of in-vitro-generated monocyte-derived dendritic cellsMorper, Lorenz January 2023 (has links) (PDF)
Dendritische Zellen (DC) spielen eine Schlüsselrolle im Immunsystem. Sie dienen als professionelle antigenpräsentierende Zellen und können eine antigenspezifische Immunantwort initiieren, indem sie naive T-Zellen primen.
DC können auch verwendet werden, um T-Zellen im Kontext der onkologischen Immuntherapie zu stimulieren. In vitro können sie leicht aus Monozyten differenziert werden. Die daraus resultierenden unreifen DC können bereits Antigene phagozytieren und präsentieren, sie aktivieren jedoch noch keine Immunantwort solange keines der aufgenommenen Antigene als pathogen erkannt wird. Die Ausreifung einer unreifen, tolerogenen DC zu einer immunogenen reifen DC kann, neben anderen Methoden, durch einen Cocktail aus TLR-Liganden oder Zytokinen erreicht werden. Die Auswahl der Substanzen in diesem Cocktail bestimmt den Phänotyp und die funktionellen Eigenschaften der resultierenden reifen DC. Einige der benötigten Fähigkeiten der DC in der Tumorimmuntherapie, wo sie aus Patientenmonozyten generiert, mit Tumorantigen beladen und dem Patienten wieder zugeführt werden sollen, umfassen die Migration zu den T-Zell-Zonen der Lymphknoten, Antigenpräsentation auf sowohl MHC-I- als auch MHC-II-Molekülen, Zytokinproduktion für die Direktion der T-Zell-Antwort wie IL-12p70, und die Expression von Oberflächenmarkern wie der kostimulatorischen Moleküle CD80 und CD86.
In der Vergangenheit wurde gezeigt, dass durch Zugabe von Prostaglandin E2 (PGE2) zu einem Cocktail mit dem synthetischen TLR3-Liganden poly-I:C und dem TLR7/8-Liganden R848 (Resiquimod) sowohl eine gute migratorische Fähigkeit als auch eine erhöhte IL-12p70-Produktion erreicht werden kann, während etwa die Fähigkeit zur Antigen-Kreuzpräsentation reduziert erschien. Anhand von Monozyten anonymer gesunder Spender beleuchtet diese Arbeit daher den Effekt von PGE2 auf monozytenderivierte DC näher, indem seine konzentrationsabhängige Wirkung auf deren Phänotyp untersucht wird. In den durchgeführten Versuchen wurde dabei die Expressionsdichte der Oberflächenmarker CD83, CD80 und CD86, HLA-DR und CCR7 sowie der monozytäre Marker CD14 durchflusszytometrisch analysiert. Die Ergebnisse zeigen bei Exposition mit PGE2 dosisabhängig eine Heraufregulation von CD80, CD83, CD86 und CCR7 in der Population reifer DC, deren Maximum in unteren mikromolaren Konzentrationen erreicht wird. Gleichzeitig induzierte PGE2 dosisabhängig auch die Entstehung einer zweiten Zellpopulation mit anderen Eigenschaften, die stattdessen den monozytären Marker CD14 re-exprimierte. Dies ist für künftige Studien eine interessante Beobachtung, da sie eine differenzierte Betrachtung beider resultierender Subpopulationen anregt. / Dendritic cells (DC) play a key role in the immune system. They serve as professional antigen presenting cells and can initiate an antigen-specific immune response by priming naive T cells.
DC can also be used to stimulate T cells in the context of tumor immunotherapy. In vitro, they can easily be differentiated from monocytes. The resulting immature DC are capable of antigen phagocytosis and presentation, but do not yet activate an immune response as long as none of the uptaken antigens is recognized as pathogenic. The process of converting an immature, tolerogenic DC to an immunogenic mature DC can, among other methods, be achieved by using a cocktail of toll-like receptor (TLR) ligands and cytokines. The choice of the substances included into this cocktail later determines the phenotype and capabilities of the resulting mature dendritic cells. Some of the required DCs' capabilities in the field of cancer immunotherapy, where they are to be generated from patient monocytes, loaded with tumor antigen and re-transferred into the patient, include migration to the T cell areas of lymph nodes, antigen presentation on both MHC-I and MHC-II molecules, cytokine production for shaping the T cell response such as IL-12p70, and the expression of surface markers such as the costimulatory molecules CD80 and CD86.
Adding Prostaglandin E2 (PGE2) to a cocktail of the TLR3 ligand poly(I:C) and the TLR7/8 ligand R848 (Resiquimod) has been shown to result in a good migratory capacity as well as an elevated IL-12p70 production. In earlier research, the capability of antigen cross-presentation however appeared to be reduced when PGE2 was added. Hence, using anonymous healthy donor monocytes, this work was designed to further investigate the effects of PGE2 on DC dose-dependently by studying their phenotype. Particularly, the density of the cell surface markers CD83, CD80 and CD86, HLA-DR and CCR7 as well as the monocyte marker CD14 have been studied in flow cytometry. The results suggest a dose-dependent up-regulation by PGE2 of CD80, CD83, CD86 and CCR7 in the population of mature DC reaching its maximum at low µM concentrations. Simultaneously, PGE2 also dose-dependently induced the generation of a second cell population, which instead re-expressed the monocyte marker CD14. This is an interesting finding as well as it encourages a differential look at both resulting subpopulations in future analyses.
|
8 |
In Vitro Equine Flexor Tendonitis: New Model Development and Therapeutic InvestigationCissell, James Michael 21 September 2009 (has links)
Flexor tendonitis is a common cause of lameness and wastage in the equine athlete. Current techniques for tendonitis therapy provide limited success, and horses that do recover tend to return at a decreased level of performance. Current treatment techniques have begun to focus on regenerative medicine to improve tissue healing. Investigations of new treatments are made difficult by the lack of reliable in vitro models that allow for accurate comparison of treatment protocols. New techniques are often implemented into the clinical setting prior to thorough investigation for safety and efficacy.
In vitro testing is an important step in the development of new therapeutic agents. However, results of in vitro tests should only be deemed as useful if the model used is one that is reliable and mimics the clinical situation that the reseachers are attempting to investigate. Equine flexor tendonitis is believed to be the result of microdamage caused by cyclic loading of tendons. Cyclic loading of fibroblasts results in increased production of the inflammatory cytokine prostaglandin E2 (PGE2). Thus the exposure of tendon fibroblasts to exogenous PGE2 may induce metabolic changes in the cells similar to what is seen in clinically affected animals making this a useful model for the investigation of therapeutic techniques.
Currently a variety of techniques exist for treatment of flexor tendonitis; however, no single treatment has separated itself as superior. A new technique using autogenous conditioned serum (ACS) in humans for treatment of muscle injury has been shown to speed tissue regeneration. ACS produced from human blood has been shown to contain significantly increased levels of III growth factors that may improve tendon fibril formation and strength. We propose to investigate the effect of ACS on cellular metabolism in equine tendon fibroblast monolayers. This will involve cell culture, PGE2-induced cellular injury, and analysis of the cellular response to injury when treated with ACS. Controls will include fetal bovine serum, normal equine serum, and ACS without PGE2-induced cellular injury. The cellular response will be investigated biochemically by quantification of DNA, glycosaminoglycan, and soluble collagen levels and by real time PCR to assess gene expression for matrix metalloproteinases (MMP)-1, MMP-3, and MMP-13, collagen types I and III, and the non-collagenous proteins cartilage oligomeric matrix protein (COMP) and decorin. Data will be analyzed by analysis of variance and post-hoc comparisons. Significance will be set at p<0.05.
We hypothesize that the addition of exogenous PGE2 to culture media for monolayers of equine tendon fibroblasts will insight alterations in cellular metabolism that will generate a suitable model for the in vitro study of fibroblast response to novel therapies. We then hypothesize that the addition of ACS to PGE2-treated fibroblasts will result in increased gene expression for collagen types I and III, cartilage oligomeric matrix protein, and decorin. ACS will also stimulate increased protein production of collagen and glycosaminoglycans, and stimulate increased cell proliferation. The use of ACS will decrease gene expression of inflammatory molecules important in tendon degradation, namely matrix metalloproteinases -1, -3, and -13. / Master of Science
|
9 |
Modulation der Insulinsignalgebung durch Prostaglandin E2 und Endocannabinoide / Modulation of insulin signaling by prostaglandin E2 and endocannabinoidsStrohm, Daniela January 2010 (has links)
Die adipositasbedingte Insulinresistenz geht mit einer unterschwelligen Entzündungsreaktion einher. Als Antwort auf dieses Entzündungsgeschehen wird PGE2 unter anderem von Kupffer Zellen der Leber freigesetzt und kann seine Wirkung über vier PGE2-Rezeptorsubtypen (EP1-EP4) vermitteln. In vorangegangenen Arbeiten konnte gezeigt werden, dass PGE2 in Rattenhepatozyten über den EP3 R ERK1/2-abhängig die intrazelluläre Weiterleitung des Insulinsignals hemmt. Über die Modulation der Insulinrezeptorsignalkette durch andere EP-Rezeptoren war bisher nichts bekannt. Daher sollte in stabil transfizierten Zelllinien, die jeweils nur einen der vier EP-Rezeptorsubtypen exprimierten, der Einfluss von PGE2 auf die Insulinrezeptorsignalkette untersucht werden. Es wurden HepG2-Zellen, die keinen funktionalen EP-Rezeptor aufwiesen, sowie HepG2-Zellen, die stabil den EP1-R (HepG2-EP1), den EP3β-R (HepG2 EP3β) oder den EP4-R (HepG2 EP4) exprimierten, sowie die humane fötale Hepatozytenzelllinie, Fh hTert, die den EP2- und den EP4-R exprimierte, für die Untersuchungen verwendet. Die Zellen wurden für 330 min mit PGE2 (10 µM) vorinkubiert, um die pathophysiologische Situation nachzustellen und anschließend mit Insulin (10 nM) für 15 min stimuliert. Die insulinabhängige Akt- und ERK1/2-Phosphorylierung wurde im Western-Blot bestimmt.
In allen Hepatomzelllinien die EP-R exprimierten, nicht aber in der Zelllinie, die keinen EP R exprimierte, hemmte PGE2 die insulinstimulierte Akt-Phosphorylierung. In allen drei stabil transfizierten Zelllinien, nicht jedoch in den Fh-hTert-Zellen, steigerte PGE2 die basale und insulinstimulierte Phosphorylierung der Serin/Threoninkinase ERK1/2. In den HepG2 EP1- und den HepG2-EP3β-Zellen steigerte PGE2 mutmaßlich über die ERK1/2-Aktivierung die Serinphosphorylierung des IRS, welche die Weiterleitung des Insulinsignals blockiert. Die Hemmung der Aktivierung von ERK1/2 hob in EP3 R-exprimierenden Zellen die Abschwächung der Insulinsignalübertragung teilweise auf. In diesen Zellen scheint die ERK1/2-Aktivierung die größte Bedeutung für die Hemmung der insulinstimulierten Akt-Phosphorylierung zu haben. Da durch die Hemmstoffe die PGE2-abhängige Modulation nicht vollständig aufgehoben wurde, scheinen darüber hinaus aber noch andere Mechanismen zur Modulation beizutragen. In den Fh hTert-Zellen wurde die Insulinrezeptorsignalkette offensichtlich über einen ERK1/2-unabhängigen, bisher nicht identifizierten Weg unterbrochen.
Eine gesteigerte PGE2-Bildung im Rahmen der Adipositas ist nicht auf die peripheren Gewebe beschränkt. Auch im Hypothalamus können bei Adipositas Zeichen einer Entzündung nachgewiesen werden, die mit einer gesteigerten PGE2-Bildung einhergehen. Daher wurde das EP R-Profil von primären hypothalamischen Neuronen und neuronalen Modellzelllinien charakterisiert, um zu prüfen, ob PGE2 in hypothalamischen Neuronen die Insulinsignalkette in ähnlicher Weise unterbricht wie in Hepatozyten. In allen neuronalen Zellen hemmte die Vorinkubation mit PGE2 die insulinstimulierte Akt-Phosphorylierung nicht. In der neuronalen hypothalamischen Zelllinie N 41 wirkte PGE2 eher synergistisch mit Insulin. In durch Retinsäure ausdifferenzierten SH SY5Y-Zellen waren die Ergebnisse allerdings widersprüchlich. Dies könnte darauf zurückzuführen sein, dass die Expression der EP Rezeptoren im Verlauf der Kultur stark schwankte und somit die EP R-Ausstattung der Zellen zwischen den Zellversuchen variierte. Auch in den primären hypothalamischen Neuronen variierte die EP R-Expression abhängig vom Differenzierungszustand und PGE2 beeinflusste die insulinstimulierte Akt-Phosphorylierung nicht. Obwohl in allen neuronalen Zellen die Akt-Phosphorylierung durch Insulin gesteigert wurde, konnte in keiner der Zellen eine insulinabhängige Regulation der Expression von Insulinzielgenen (POMC und AgRP) nachgewiesen werden. Das liegt wahrscheinlich an dem niedrigen Differenzierungsgrad der untersuchten Zellen.
Im Rahmen der Adipositas kommt es zu einer Überaktivierung des Endocannabinoidsystems. Endocannabinoidrezeptoren sind mit den EP Rezeptoren verwandt. Daher wurde geprüft, ob Endocannabinoide die Insulinsignalweiterleitung in ähnlicher Weise beeinflussen können wie PGE2. Die Vorinkubation der N 41-Zellen für 330 min mit einem Endocannabinoidrezeptoragonisten steigerte die insulinstimulierte Akt-Phosphorylierung, was auf einen insulinsensitiven Effekt von Endocannabinoiden hindeutet. Dies steht im Widerspruch zu der in der Literatur beschriebenen endocannabinoidabhängigen Insulinresistenz, die aber auf indirekte, durch Endocannabinoide ausgelöste Veränderungen zurückzuführen sein könnte. / The obesity related insulin resistance is accompanied by a low grade inflammation. In response to inflammatory stimuli, PGE2 is released from Kupffer cells and signals through four G-Protein coupled PGE2-receptors (EP1-EP4). Previous work showed that PGE2 attenuated insulin signaling in rat hepatocytes through an EP3ß- and ERK1/2-dependent mechanism. Since EP-receptor expression on hepatocytes varies between species and physiological conditions, the effect of the individual EP receptor subtypes on insulin signaling was studied in hepatoma cell lines expressing individual EP receptor subtypes. HepG2 cells lacking functional EP-receptors, and derivatives stably expressing either EP1 receptor (HepG2-EP1), EP3ß receptor (HepG2-EP3ß) or EP4 receptor (HepG2-EP4) and Fh-hTert cells expressing EP2- and EP4-receptor were pre-incubated with PGE2 for 330 min to mimic the sub-acute inflammation. The cells were subsequently stimulated with insulin for 15 min. Akt and ERK1/2 activation was determined by Western Blotting with phospho-specific antibodies.
PGE2 inhibited insulin stimulated Akt phosphorylation in all cell lines expressing EP receptors, except in HepG2 cells which are lacking functional EP receptors. PGE2 increased insulin stimulated phosphorylation of the serine/threonine kinase ERK1/2 in all EP R expressing HepG2 cell lines except in Fh-hTert cells. In HepG2-EP1 and HepG2 EP3ß cells PGE2 increased the serine phosphorylation of the insulin receptor substrate, presumably through an ERK1/2 activation. This IRS-serine phosphorylation leads to attenuation of insulin signal transduction. Inhibiting ERK1/2 activation with a specific inhibitor attenuated the PGE2-dependent inhibition of insulin signal transmission in HepG2 EP3ß cells to some extent. ERK1/2 activation in these cells seems to be of major importance for the observed attenuation of insulin stimulated Akt phosphorylation. Application of inhibitors in the other cell lines stably expressing EP receptors provided evidence that other mechanisms contributed to the attenuation of insulin signaling. Insulin signal transduction in Fh-hTert cells by PGE2 was apparently blocked by an ERK1/2-independent mechanism.
Increased PGE2 production during obesity is not limited to the periphery. Signs of inflammation have been detected in the hypothalamus, which might be associated with an increased PGE2 production. Therefore, the EP receptor profile of primary neurons as well as neuronal cell models was characterised in order to investigate, whether PGE2 attenuates insulin signal transduction in neuronal cells similar to what was observed in hepatocytes. Pre-incubation with PGE2 did not attenuate insulin stimulated Akt phosphorylation in all neuronal cells. The EP receptor profile in SH SY5Y cells and in primary neurons varied depending on the differentiation status of the cells. Although Akt-kinase was phosphorylated in response to insulin stimulation in all neuronal cells studied, gene expression of insulin target genes (POMC, AgRP) was not modulated by insulin. This might be due to the low level of differentiation of the investigated cells.
In the course of obesity, an over-activation of the endocannabinoid system is detected. Since endocannabinoid receptors are related to EP receptors, it was investigated whether endocannabinoids can interfere with insulin signaling in a similar way as PGE2. Pre-incubation of the neuronal cell line N 41 for 330 min with an endocannabinoid receptor agonist, increased insulin stimulated Akt phosphorylation. This implies an insulin sensitising effect of endocannabinoids. This is contradictory to the endocannabinoid-dependent insulin resistance described in the literature and might be caused by indirect endocannabinoid-triggered mechanisms.
|
10 |
Discovery and Characterization of Novel Inhibitors of the Prostaglandin E2 PathwayChang, Hui-Hua January 2013 (has links)
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme following cyclooxygenase-2 (COX-2) for the production of prostaglandin E₂(PGE₂), and has been identified as a novel therapeutic target for cancers. From an in silico screen aimed at developing novel small molecule inhibitors of mPGES-1, a 2-aminothiazole compound PGE0001 was identified from 13 putative hits based on its ability to reduce cellular PGE₂ and minimal COX-2 inhibition in vitro. Utilizing drug design strategies based on a 4-point pharmacophore model, we also discovered a new series of compounds exhibiting superior potency without inhibiting COX-2, as exemplified by compound PGE0056. In multiple cancer cell lines, both PGE0001 and PGE0056 reduced cytokine-stimulated PGE₂ release with submicromolar EC₅₀ values, although the two compounds exhibited differential kinetics. Importantly, these compounds showed promising anti-tumor effects in xenograft mouse models. Mice injected with the compounds also had reduced PGE₂ in serum. Surprisingly, none of the compounds inhibited mPGES-1 in cell-free assays, except for MK-886, a reported mPGES-1 inhibitor. In order to determine the mechanisms of action of PGE0001 and PGE0056, the PGE₂ synthesis cascade was extensively examined. Immunoblotting analysis suggested that the PGE₂ reduction in a short time frame was not due to alteration of the protein level of enzymes involved in PGE₂ synthesis/metabolism. So far, we have excluded upstream COX-1/2, phospholipase A₂, and other PGE synthases (mPGES-2 & cytosolic PGES) as major targets for PGE0001 or PGE0056. Interestingly, these compounds were found to inhibit a number of kinases implicated in cancer, presumably due to their structural feature. Although these alternative kinase targets may not sufficiently explain the mechanisms responsible for PGE₂ reduction, inhibition of them may strengthen the therapeutic potential of our compounds. We also implemented a target pull-down approach using biotinylated derivatives of these compounds, followed by proteomic analysis to isolate targets to which these compounds bind. As a result, we identified a couple of other enzymes involved in the arachidonic acid metabolic pathway, which need to be further validated. In summary, we identified novel classes of anti-inflammatory compounds with anti-tumor activity, although the mechanisms of action remain to be clarified.
|
Page generated in 0.0824 seconds