Multi-display environments (such as the pairing of a digital tabletop computer with a set of handheld tablet computers) can support collocated interaction in groups by providing individuals with private workspaces that can be used alongside shared interaction surfaces. However, such a configuration necessitates the inclusion of intuitive and seamless interactions to move digital objects between displays. While existing research has suggested numerous methods to bridge devices in this manner, these methods often require highly specialized equipment and are seldom examined using real-world tasks. This thesis investigates the use of two cross-device object transfer methods as adapted for use with commonly-available hardware and applied for use in a realistic task, a familiar tabletop card game.
A digital tabletop and tablet implementation of the tabletop card game Dominion is developed to support each of the two cross-device object transfer methods (as well as two different turn-taking methods to support user identification). An observational user study is then performed to examine the effect of the transfer methods on groups’ behaviour, examining player preferences and the strategies which players applied to pursue their varied goals within the game. The study reveals that players’ choices and use of the methods is shaped greatly by the way in which each player personally defines the Dominion task, not simply by the objectives outlined in its rulebook. Design considerations for the design of cross-device object transfer methods and lessons-learned for system and experimental design as applied to the gaming domain are also offered.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/7258 |
Date | January 2013 |
Creators | McClelland, Phillip James |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0019 seconds