Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-24T21:11:51Z
No. of bitstreams: 2
Souza, Fabrício Ribeiro de - Dissertação - 2013.pdf: 1564907 bytes, checksum: 3eb82393d3125b0bd24821af947f63b8 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-25T10:36:07Z (GMT) No. of bitstreams: 2
Souza, Fabrício Ribeiro de - Dissertação - 2013.pdf: 1564907 bytes, checksum: 3eb82393d3125b0bd24821af947f63b8 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-25T10:36:07Z (GMT). No. of bitstreams: 2
Souza, Fabrício Ribeiro de - Dissertação - 2013.pdf: 1564907 bytes, checksum: 3eb82393d3125b0bd24821af947f63b8 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-08-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This report describes the fabrication of a minimally instrumented polyestertoner
device (PTD) to perform by the first time, clinical diagnostics with
colorimetric detection and microfluidic transport by capillary action. A
conventional digital camera, a cellphone camera, an optical microscope, and
a scanner mode from a multifunction printer were evaluated for using as
colorimetric detector. In order to study the analytical performance it was used
a platform containing nine detection zones directly printed on a polyester film.
It has been observed that all electronic devices studied could be applied as
colorimetric detector. However, the scanner exhibited the best performance
on the control of two problems often observed in the images acquisition,
which are related to the ambient light and focus. Due to the best results, the
analytical feasibility of the scanner was evaluated for the determination of
Fe2+ in drugs samples by using the 1,10-phenanthroline method. The data
were compared to results achieved by a reference spectrophotometric
method. Based on a statistical analysis, it was not been found significance
differences (P=0,05). Afterwards, the scanner was chosen to monitor the
colorimetric response of clinical assays regarded to the detection of glucose,
total protein, cholesterol, and triglycerides on a PTD. The proposed device
exhibited good inter and intra-device reproducibility (relative standard
deviation values lower than 6%). A semi-quantitative analysis of glucose,
total protein, and cholesterol in an artificial serum sample provided results
similar to the data provide by the supplier. The shelf life of PTDs was
evaluated in a period of five days, using the glucose assay at three different
temperature: 10 ºC, 25 ºC e 40 ºC. The shelf life was estimated to be c.a.
three days, taking into account that in this period there was a lost of 50% in
the mean color intensity. Lastly, it was observed that the addition of a
disaccharide (trehalose) ensures the enzymatic stability at the different
temperatures during five consecutive days. The cost of a PTD has been
estimated to be ca. R$ 0.40 taking into account the fabrication process. / O presente trabalho descreve a construção de dispositivos em
poliéster-toner (DPTs) minimamente instrumentados para conduzir, pela
primeira vez, diagnósticos clínicos utilizando detecção colorimétrica e
transporte microfluídico com ação capilar. Uma câmera digital convencional,
uma câmera de celular, um microscópio óptico e o modo scanner de uma
impressora multifuncional foram avaliados como detectores colorimétricos.
No estudo do desempenho analítico utilizou-se uma plataforma com nove
zonas de detecção impressas diretamente em uma folha de poliéster. Todos
os dispositivos eletrônicos avaliados podem ser aplicados como detector
colorimétrico. Entretanto, o scanner demonstrou facilidade no controle dos
dois problemas que dificultam a aquisição das imagens: quantidade de luz
do ambiente e foco. Frente a essa facilidade, realizou-se um estudo
comparando o desempenho analítico do scanner em relação a um
espectrofotômetro, utilizando a determinação de Fe2+ pelo método da 1,10-
fenantrolina. Cálculos estatísticos foram realizados e não foram observadas
diferenças significativas entre o desempenho analítico dos equipamentos
(P=0,05). Após, a avaliação do desempenho analítico, o scanner foi
escolhido para monitorar a resposta colorimétrica dos ensaios clínicos de
glicose, proteínas totais, colesterol e triglicerídeos, usando os DPTs. O
dispositivo proposto apresentou boa repetibilidade inter e intra-dispositivos
com desvio padrão relativo abaixo de 6%. Uma análise semi-quantitativa
para glicose, proteínas totais e colesterol foi conduzida utilizando uma
amostra de soro humano artificial. Os níveis de concentração encontrados
estavam de acordo com os dados fornecidos pelo fabricante. O tempo de
meia-vida dos DPTs foi avaliado ao longo de cinco dias, utilizando o ensaio
para glicose em diferentes temperaturas: 10 ºC, 25 ºC e 40 ºC. A meia-vida
dos DPTs foi estimado em três dias, considerando que nesse período houve
um decréscimo de 50% na intensidade média de pixels, da cor desenvolvida.
Observou-se que a adição de um dissacarídeo (trealose) assegurou a
estabilidade enzimática em diferentes temperaturas ao longo de cinco dias
consecutivos. O custo total de um DPT, considerando o processo de
fabricação, foi estimado em R$ 0,40.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3165 |
Date | 28 August 2013 |
Creators | Souza, Fabrício Ribeiro de |
Contributors | Coltro, Wendell Karlos Tomazelli, Coltro, Wendell Karlos Tomazelli, Piccin, Evandro, Oliveira, Anselmo Elcana de |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Química (IQ), UFG, Brasil, Instituto de Química - IQ (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 663693921325415158, 600, 600, 600, 600, 7826066743741197278, -6794069463227071484, 2075167498588264571, ARORA, A.; SIMONE, G.; SALIEB-BEUGELAAR, G. B.; KIM, J. T.; MANZ, A. Latest developments in micro total analysis systems. Analytical Chemistry, v. 82, n. 12, p. 4830-4847, 2010. AUROUX, P. A.; IOSSIFIDIS, D.; REYES, D. R.; MANZ, A. Micro Total Analysis systems. 2. Analytical Standard Operations and applications. Analytical Chemistry, v. 74, n. 12, p. 2637-2652, 2002. BABAIE, A.; SAIDI, M. H.; SADEGHI, A. Electroosmotic flow of power-law fluids with temperature dependent properties. Journal of Non-Newtonian Fluid Mechanics, v. 185, p. 49-57, 2012. BAKER, D. Capillary Electrophoresis. New York: John Wiley, 244 p, 1995. BRUZEWICZ, D. A.; RECHES, M.; WHITESIDES, G. M.; Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, v. 80, n. 9, p. 3387-3392, 2008. CAMBUIM, K. B. Carvão do endocarpo de coco da Baía ativado quimicamente com H3PO4 e fisicamente com vapor de d’água: produção, caracterização e aplicações. João Pessoa, 2009. 137p. Tese (Doutorado) – Departamento de Química, Universidade Federal da Paraíba. CARRILHO, E.; MARTINEZ, A. W.; WHITESIDES, G. M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical Chemistry, v. 81, n. 16, p. 7091-7095, 2009a. CARRILHO, E.; PHILLIPS, S. T.; VELLA, S. J.; MARTINEZ, A. W.; WHITESIDES, G. M.; Paper microzones plates, Analytical Chemistry, v. 81, n. 15, p. 5990-5998, 2009b. CHEN, H.; LI, X.; WANG, L.; LI, P.C.H. A rotating microfluidic array chip for staining assays, Talanta, v. 81, n. 4-5, p. 1203-1208, 2010. CHEN, Y.; PÉPIN, A.; Nanofabrication: Conventional and nonconventional methods. Electrophoresis, v. 22, n. 2, p. 187-207, 2001. COLTRO, W. K. T.; DA SILVA, J. A. F.; CARRILHO, E. Rapid prototyping of polymeric electrophoresis microchips with integrated copper electrodes for contactless conductivity detection. Analytical Methods, v. 3, n. 1, p. 168-172, 2011. COLTRO, W. K. T.; DA SILVA, J. A. F.; CARRILHO, E.; Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Electrophoresis, v. 29, n. 11, p. 2260-2265, 2008a. 72 COLTRO, W. K. T.; DA SILVA, J. A. F.; DA SILVA, H. D. T.; RICHTER, E. M.; FURLAN, R.; ANGNES, L.; DO LAGO, C. L.; MAZO, L. H.; CARRILHO, E.; Electrophoresis Microchip fabricated by direct-printing process with endchannel amperometric detection. Electrophoresis, v. 25, n. 21-22, p. 3832- 3839, 2004. COLTRO, W. K. T.; DE JESUS, D. P.; DA SILVA, J. A. F.; DO LAGO, C. L.; CARRILHO, E.; Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis, v. 31, n. 15, p. 2487-2498, 2010. COLTRO, W. K. T.; LUNTE, S. M.; CARRILHO, E.; Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. Electrophoresis, v. 29, n. 24, p. 4928-4937, 2008b. COLTRO, W. K. T.; PICCIN, E.; CARRILHO, E.; DE JESUS, D. P.; DA SILVA, J. A. F.; DA SILVA, H. D. T.; DO LAGO, C. L.; Micro chemical analysis systems. Introduction, fabrication technologies, instrumentation and applications. Química Nova, v. 30, n. 8, p. 1986-2000, 2007. COMER, J. P. Semiquantitative specific test paper for glucose in urine. Analytical Chemistry, v. 28, n. 11, p.1748-1750, 1956. DARHUBER, A. A.; TROIAN, S. M. Principles of microfluidic actuation by modulation of surface stresses. Annual Review of Fluid Mechanics, v. 37, p. 425-455, 2005. DA SILVA, E. R. SEGATO, T. P.; COLTRO, W. K. T.; LIMA, R. S.; CARRILHO, E.; MAZO, L. H. Determination of glyphosate and AMPA on polyester-toner electrophoresis microchip with contactless conductivity detection. Electrophoresis, v. 34, n. 14, p. 2107-2111, 2013. DE SOUZA, F. R.; ALVES, G. L.; COLTRO, W. K. T. Capillary-driven tonerbased microfluidic devices for clinical diagnostics with colorimetric detection. Analytical Chemistry, v. 84, n. 21, p. 9002-9007, 2012. DITTRICH, P. S.; TACHIKAWA, K.; MANZ, A. Micro Total Analysis Systems. Latest Advancements and trends. Analytical Chemistry, v. 78, n. 12, p. 3887- 3907, 2006. DO LAGO, C. L.; DA SILVA, H. D. T.; NEVES, C. A.; BRITO-NETO, J. G. A.; DA SILVA, J. A. F.; A dry process for production of microfluidic devices based on the lamination of laser-printed polyester. Analytical Chemistry, v. 75, n. 15, p. 3853-3858, 2003. DUARTE, G. R. M.; COLTRO, W. K. T.; BORBA, J. C.; PRICE, C. W.; LANDERS, J. P.; Disposable polyester-toner electrophoresis microchips for DNA analysis. Analyst, v. 137, n. 11, p. 2692-2698, 2012. DUARTE, G. R. M.; PRICE, C. W.; AUGUSTINE, B. H.; CARRILHO, E.; LANDERS, J. P.; Dynamic Solid Phase DNA Extraction and PCR 73 Amplification in Polyester-Toner Based Microchip. Analytical Chemistry, v. 83, n. 13, p. 5182-5189, 2011. DUNGCHAI, W.; CHAILAPAKUL, O.; HENRY, C. S.; Use of multiple colorimetric indicators for paperbased microfluidic devices. Analytical Chimica Acta, v. 674, n. 2, p. 227-233, 2010. ELLERBEE, A. K.; PHILLIPS, S. T.; SIEGEL, A. C.; MIRICA, K. A.; MARTINEZ, A. W.; STRIEHL, P.; JAIN, N.; PRENTISS, M.; WHITESIDES, G. M.; Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper. Analytical Chemistry, v. 81, n. 20, p. 8447-8452, 2009. GABRIEL, E. F. M.; DUARTE JUNIOR, G. F.; GARCIA, P. T.; DE JESUS, D. P.; COLTRO, W. K. T.; Polyester-toner electrophoresis microchips with improved analytical performance and extended lifetime. Electrophoresis, v. 33, n. 17, 2660-2667, 2012. GARCÍA, A.; ERENAS, M. M.; MARINETTO, E. D.; ABAD, C. A.; ORBEPAYA, I.; PALMA, A. J.; CAPITÁN-VALLVEY, L. F.; Mobile phone platform as portable chemical analyzer. Sensors and Actuators B-Chemical, v. 156, n. 1, p. 350-359, 2011. GERVAIS, L.; DELAMARCHE, E. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab on a Chip, v. 9, n. 23, p. 3330-3337, 2009. GODINHO, M. S.; PEREIRA, R. O.; RIBEIRO, K. O.; SCHIMIDT, F.; DE OLIVEIRA, A. E.; DE OLIVEIRA, S. B. Classificação de refrigerantes através de análise de imagens e análise de componentes principais (PCA). Química Nova, v. 31, n. 6, p. 1485-1489, 2008. HITZBLECK, M.; AVRAIN, L.; SMEKENS, V.; LOVCHIK, R. D.; MERTENS, P.; DELAMARCHE, E. Capillary soft valves for microfluidics. Lab on a Chip, v. 12, n. 11, p. 1972-1978, 2012. IQBAL, Z.; BJORKLUND, R. B.; Colorimetric analysis of water and sand samples performed on a mobile phone. Talanta, v. 84, n. 4, p. 1118-1123, 2011. JUNCKER, D.; SCHMID, H.; DRECHSLER, U.; WOLF, H.; WOLF, M.; MICHEL, B.; DE ROOIJ, N.; DELAMARCHE, E. Autonomous microfluidic capillary system. Analytical Chemistry, v. 74, n. 24, p. 6139-6144, 2002. KARLINSEY, J. M. Sample introduction techniques for microchip electrophoresis: A review. Analytica Chimica Acta, v. 725, p. 1-13, 2012. KIM, A. R.; KIM, J. Y.; CHOI, K.; CHUNG, D. S. On-chip immunoassay of a cardiac biomarker in serum using a polyester-toner microchip. Talanta, v. 109, p. 20-25, 2013. 74 KLASNER, S. A.; PRICE, A. K.; HOEMAN, K. W.; WILSON, R. S.; BELL, K. J.; CULBERTSON, C. T.; Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Analytical and Bioanalytical Chemistry, v. 397, n. 5, p. 1821-1829, 2010. KOVARIK, M. L.; ORNOFF, D. M.; MELVIN, A. T.; DOBES, N. C.; WANG, Y.; DICKINSON, A. J.; GACH, P. C.; SHAH, P. K.; ALLBRITTON, N. L.; Micro Total Analysis Systems: Fundamentals Advances and Applications in the Laboratory, Clinic, and Field. Analytical Chemistry, v. 85, n. 2, p. 451-472, 2013. LEE, D.; CHOU, W. P.; YEH, S. H.; CHEN, P. J.; CHEN, P.H.; DNA detection using commercial mobile phones. Biosensors & Bioelectronics, v. 26, n. 11, p. 4349-4354, 2011. LI, X.; BALLERINI, D. R.; SHEN, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, v. 6, n. 1, p. 1-13 (011301), 2012. LIN, B.; LEVCHENKO, A.; Microfluidic technologies for studying synthetic circuits. Current Opinion in Chemical Biology, v. 16, n. 3-4, p. 307-317, 2012. LIU, A. L.; HE, F. Y.; HU, Y. L.; XIA, X. H.; Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. Talanta, v. 68, n. 4, p. 1303-1308, 2006. LU, Y.; HU, Y. L.; XIA, X. H.; Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip. Talanta, v. 79, n. 5, p. 1270-1275, 2009a. LU, Y.; SHI, W.; QIN, J.; LIN, B.; Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis, v. 30, n. 4, p. 579–582, 2009b. MÄÄTTÄNEM, A.; FORS, D.; WANG, S.; VALTAKARI, D.; IHALAINEN, P.; PELTONEN, J. Paper-based planar reaction arrays for printed diagnostics. Sensors and Actuators B-Chemical, v. 160, n. 1, p. 1404-1412, 2011. MANZ, A.; GRABER, N.; WIDMER, H. M.; Miniaturized total chemical analysis systems: a novel concept for chemical Sensing. v. 1, n. 1-6, p. 244- 248, 1990. MARTINEZ, A. W.; PHILLIPS, S. T.; BUTTE, M. J.; WHITESIDES, G. M.; Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie-International Edition, v. 46, n. 8, p. 1318- 1320, 2007. MARTINEZ, A. W.; PHILLIPS, S. T.; CARRILHO, E.; THOMAS III, S. W.; SINDI, H.; WHITESIDES, G. M.; Simple telemedicine for developing regions: 75 Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry, v. 80, n. 10, p. 3699-3707, 2008a. MARTINEZ, A. W.; PHILLIPS, S. T.; WHITESIDES, G. M.; CARRILHO, E.; Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, v. 82, n. 1, p. 3-10, 2010. MARTINEZ, A. W.; PHILLIPS, S. T.; WHITESIDES, G. M.; Threedimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 50, p.19606-19611, 2008b. MARTINEZ, A. W.; PHILLIPS, S. T.; WILEY, B. J.; GUPTA, M.; WHITESIDES, G. M.; FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a Chip, v. 8, n. 12, p. 2146-2150, 2008c. MCPHERSON, R. A.; PINCUS, M. R. Henry’s Clinical Diagnosis and Management by Laboratory Methods. Elsevier Saunders: Philadelphia, 2011, 1568p. MILLER, J. N. MILLER J. C. Statistics and Chemometrics for Analytical Chemistry. England: Pearson, 2010, 130p. MULLER, R. H.; CLEGG, D. L.; Automatic paper chromatography. Analytical Chemistry, v. 21, n. 9, p. 1123-1125, 1949. NGE, P. N.; ROGERS, C. I.; WOOLLEY, A. T.; Advances in microfluidic materials, functions, integration, and applications. Analytical Chemistry, v.113, n. 4, p. 2550-2583, 2013. NIE, J.; ZHANG, Y.; LIN, L.; ZHOU, C.; LI, S.; ZHANG, L.; LI, J. Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Analytical Chemistry, v. 84, n. 15, p. 6331-6335, 2012. OLIVEIRA, K. A.; DE OLIVEIRA, C.R.; DA SILVEIRA, L.A.; COLTRO, W.K.T. Laser-printing of toner-based 96-microzone plates for immunoassays. Analyst, v. 138, n. 4, p. 1114-1121, 2013. OUYANG, Y. W.; WANG, S. B.; LI, J. Y.; RIEHL, P. S.; BEGLEY, M.; LANDERS, J. P. Rapid Patterning of “tunable” hydrophobic valves on disposable microchips by laser printer lithography. Lab on a Chip, v. 13, n. 9, p. 1762-1771, 2013. PELTON, R. Bioactive paper provides a low-cost platform for diagnostics. Trends in Analytical Chemistry, v. 28, n. 8, p. 925-942, 2009. PETERSON, C. How it works: The Charge-Coupled Device. Journal of Young Investigators, v. 3, n. 1, 2001. PICCIN, E.; COLTRO, W. K. T.; DA SILVA, J. A. F.; NETO, S. C.; MAZO, L. H.; CARRILHO, E. Polyurethane from biosource as a new material for 76 fabrication of microfluidic devices by rapid prototyping. Journal of Chromatography A, v. 1173, n. 1-2, p. 151-158, 2007. POLLOCK, N. R.; ROLLAND, J. P.; KUMAR, S.; BEATTIE, P. D.; JAIN, S.; NOUBARY, F.; WONG, V. L.; POHLMANN, R. A.; RYAN, U. S.; WHITESIDES, G. M. A paper-based multiplexed transaminase test for lowcost, point-of-care liver function testing, Science Translational Medicine, v. 4, n. 152, 2012. QASAIMEH, M. A.; RICOULT, S. G.; JUNCKER, D. Microfluidic probes for use in life sciences and medicine. Lab on a chip, v. 13, n. 1, p. 40-50, 2013. QUIRINO, J. P.; ARANAS, A. T. Simultaneous electrokinetic and hydrodynamic injection with on-line sample concentration via micelle to solvent stacking in micellar eletrokinetic chromatography. Analytica Chimica Acta, v. 733, p. 84-89, 2012. REYES, D. R.; IOSSIFIDIS, D.; AUROUX, P. A.; MANZ, A. Micro Total Analysis Systems. 1. Introduction, theory and technology. Analytical Chemistry, v. 74, n. 12, p. 2623-2636, 2002. SAITO, R. M.; COLTRO, W. K. T.; DE JESUS, D. P. Instrumentation design for hydrodynamic sample injection in microchip electrophoresis: A review. Electrophoresis, v. 33, n. 17, p. 2614–2623, 2012. SCHILLING, K. M.; JAUREGUI, D.; MARTINEZ, A. W. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-ofcare diagnostics. Lab on a Chip, v. 13, n. 4, p. 628-631, 2013. SHEN, L.; HAGEN, J. A.; PAPAUTSKY, I. Point-of-care colorimetric detection with a smartphone. Lab on a Chip, v. 12, n. 21, p. 4240-4243, 2012. SONGJAROEN, T.; DUNGCHAI, W.; CHAILAPAKUL, O.; HENRY, C. S.; LAIWATTANAPAISAL, W. Blood separation on microfluidic paper-based analytical devices. Lab on a Chip, v. 12, n. 18, p. 3392-3398, 2012. TIAN, J.; KANNANGARA, D.; LI, X.; SHEN, W.; Capillary driven low-cost Vgroove microfluidic device with high sample transport efficiency. Lab on a Chip, v. 10, n. 17, p. 2258-2264, 2010. VON LODE, P. Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clinical Biochemistry, v. 38, n. 07, p. 591-606, 2005. WANG, H.; LIU, JJ.; COOKS, R. G.; OUYANG, Z.; Paper Spray for Direct Analysis of Complex Mixtures Using Mass Spectrometry. Angewandte Chemie-International Edition, v. 49, n. 5, p. 877-880, 2010. WANG, SQ.; ZHAO, XH.; KHIMJI, I.; AKBAS, R.; QIU, W.; EDWARDS, D.; CRAMER, D. W.; YE, B.; DEMIRCI, U.; Integration of cell phone imaging with 77 microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab on a Chip, v. 11, n. 20, p. 3411-3418, 2011. WEST, J.; BECKER, M; TOMBRINK, S.; MANZ, A.; Micro total analysis systems: Latest achievements. Analytical Chemistry, v. 80, n. 12, p.4403- 4419, 2008. WHITESIDES, G. M. The origins and the future of microfluidics. England, Nature Publishing Group, p. 368-373, 2006. WHO, World Health Organization ˂www.who.int˃ YANG, D.; KRASOWSKA, M.; PRIEST, C.; POPESCU, M. N.; RALSTON, J. Dynamics of capillary-driven flow in open microchannels, Journal of Physical Chemistry C, v. 115, n. 38, p. 18761-18769, 2011. YU, H.; HE, F. Y.; LU, Y.; HU, Y. L.; ZHONG, H. Y.; XIA, X. H.; Improved separation efficiency of neurotransmitters on a native printed capillary electrophoresis microchip simply by manipulating electroosmotic flow. Talanta, v. 75, n. 1, p. 43-48, 2008. ZARGAR, B.; HATAMIE, A. A simples and fast colorimetric method or detection of hydrazine in water samples based on formation of gold nanoparticles as a colorimetric probe. Sensors and Actuators B: Chemical, v.182, p. 706-710, 2013. ZIMMERMANN, M.; SHMID, H.; HUNZIKER, P.; DELAMARCHE, E. Capillary pumps for autonomous capillary systems. Lab on a Chip, v. 7, n. 1, p. 119- 125, 2007. |
Page generated in 0.005 seconds