Return to search

Disturbance monitoring in distributed power systems

Power system generators are interconnected in a distributed network to allow sharing of power. If one of the generators cannot meet the power demand, spare power is diverted from neighbouring generators. However, this approach also allows for propagation of electric disturbances. An oscillation arising from a disturbance at a given generator site will affect the normal operation of neighbouring generators and might cause them to fail. Hours of production time will be lost in the time it takes to restart the power plant. If the disturbance is detected early, appropriate control measures can be applied to ensure system stability. The aim of this study is to improve existing algorithms that estimate the oscillation parameters from acquired generator data to detect potentially dangerous power system disturbances. When disturbances occur in power systems (due to load changes or faults), damped oscillations (or &quotmodes") are created. Modes which are heavily damped die out quickly and pose no threat to system stability. Lightly damped modes, by contrast, die out slowly and are more problematic. Of more concern still are &quotnegatively damped" modes which grow exponentially with time and can ultimately cause the power system to fail. Widespread blackouts are then possible. To avert power system failures it is necessary to monitor the damping of the oscillating modes. This thesis proposes a number of damping estimation algorithms for this task. If the damping is found to be very small or even negative, then additional damping needs to be introduced via appropriate control strategies. This thesis presents a number of new algorithms for estimating the damping of modal oscillations in power systems. The first of these algorithms uses multiple orthogonal sliding windows along with least-squares techniques to estimate the modal damping. This algorithm produces results which are superior to those of earlier sliding window algorithms (that use only one pair of sliding windows to estimate the damping). The second algorithm uses a different modification of the standard sliding window damping estimation algorithm - the algorithm exploits the fact that the Signal to Noise Ratio (SNR) within the Fourier transform of practical power system signals is typically constant across a wide frequency range. Accordingly, damping estimates are obtained at a range of frequencies and then averaged. The third algorithm applied to power system analysis is based on optimal estimation theory. It is computationally efficient and gives optimal accuracy, at least for modes which are well separated in frequency.

Identiferoai:union.ndltd.org:ADTP/265489
Date January 2007
CreatorsGlickman, Mark
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsCopyright Mark Glickman

Page generated in 0.0058 seconds