Return to search

Raisonnement équationnel et méthodes de combinaison: de la programmation à la preuve

Les travaux décrits dans ce document ont pour objectif le développement de procédures de décision (et de résolution) pour la vérification. La logique considérée est la logique du premier ordre avec égalité. Cette logique est évidemment indécidable en général, mais l'étude de fragments intéressants pour la vérification peut conduire à des outils automatiques de type "presse-bouton". La notion d'égalité est particulièrement intéressante pour programmer, par orientation des égalités, c'est-à-dire par réécriture, ou pour prouver, grâce au principe de remplacement d'égal par égal. Dans une modélisation en logique du premier ordre avec égalité, on est très facilement amené à utiliser simultanément plusieurs théories différentes pour représenter par exemple les fonctions et la mémoire d'un programme ainsi que les opérations arithmétiques effectuées par le programme. On se retrouve ainsi naturellement face à un problème exprimé dans un mélange de théories, qu'il est souhaitable de résoudre de façon modulaire en réutilisant les procédures de décision connus pour les théories composant le mélange. Cette problématique est au coeur de mes travaux. L'originalité de mon approche consiste à développer des méthodes de combinaison pour les procédures de décision utilisées dans le domaine de la vérification. Toutes les procédures de décision obtenues ont été évidemment élaborées en suivant une démarche de conception sûre, qui s'appuie sur une description à base de systèmes d'inférence pour faciliter leurs preuves.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00578600
Date27 November 2009
CreatorsRingeissen, Christophe
PublisherUniversité Henri Poincaré - Nancy I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0018 seconds