Soybean (Glycine max L.) is an important legume crop often exposed to heat and drought stresses during reproductive and early-seed setting stages, resulting in lower yields and seed quality. Ten soybean cultivars were phenotyped for individual (drought or heat) and combined stress tolerance. Under drought, reduced stomatal conductance and increased canopy temperature significantly reduced seed number (46%) and weight (35%). Heat stress alone reduced seed number (19%) and weight (23%) compared to control. Moreover, a degree increase in daytime temperature above 32 °C during the reproductive stage reduced seed weight by 4% and 7% under well-watered and drought conditions, respectively. Seed protein was increased under drought, while it declined under heat and combined stress compared to control. In contrast, oil content showed the opposite trend. Weak correlations between phenotypic traits under individual and combined stress suggest that selecting cultivars for individual stress tolerance may not work under combined stress conditions.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6824 |
Date | 12 May 2023 |
Creators | Poudel, Sadikshya |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.1848 seconds