Cette thèse porte sur le développement d’une approche pratique de modélisation/simulation des systèmes solaires combinés Photovoltaïques/Thermiques PV/T. Il s’agit d’une approche basée sur un modèle d’ordre réduit en représentation d’état (ORRE). En effet, les systèmes solaires thermiques, électriques et combinés intégrés aux bâtiments possèdent des spécificités permettant de s’affranchir des méthodes numériques classiques (mécanique des fluides numérique et thermique numérique). Ces méthodes sont réputées dans le domaine de l’aérodynamique, de l’aéraulique…etc. Par contre, dans le domaine du mix-énergétique tels que celui considéré dans ce mémoire, l’application directe de ce modèle peut conduire à des dépassements des capacités mémoire ou des temps de calcul exorbitants. Une alternative est de développer des méthodes adaptées au problème physique considéré, en traitant l’aspect multi-physique toute en restant dans une taille de données raisonnable et du temps de calcul réduit. La méthodologie de modélisation consiste à réduire les dimensions des équations qui régissent le problème. En se basant sur la symétrie du système, puis en découpant le système en zones de contrôle basées sur une valeur moyenne gouvernée par les nombres adimensionnels de Biot (Bi) et de Fourier (Fo). Les résultats obtenus en fonctionnement dynamique pourront nous fournir des paramètres de sorties, plus particulièrement, les rendements électrique, thermique et la puissance de circulation du fluide caloporteur. L’avantage de l’approche proposée réside dans la simplification du modèle résultant, qui est représenté par un seul système d’équations algébriques en représentation d’état regroupant tous les éléments physiques du système en fonctionnement dynamique (conditions aux limites variables dans le temps). Ce modèle regroupe la variable fondamentale qui est la température, et les deux types de contrôle et de conception. De plus, le modèle d’ORRE est intégrable dans le fonctionnement en temps réel des systèmes PV/T intégrés aux bâtiments (PV/T-Bât) afin d’accompagner leurs régulation et gestion des flux mise en jeu. Le modèle ainsi proposé a fait l’objet d’une validation où les résultats numériques ont été comparés aux résultats expérimentaux. En effet, quatre configurations ont été étudiées et évoquées dans une approche linéaire. Les résultats obtenus montrent une cohérence tolérable entre les résultats expérimentaux, et numériques. Cette cohérence a été évaluée en termes d’incertitude entre les résultats du modèle et le cas étudié expérimentalement. Le cas d’un système non-linéaire a été également abordé. En effet, rares sont les travaux qui ont été publiés mettant en valeur les phénomènes non-linéaires dans les systèmes complexes PV/T-Bât, Ainsi, on a développé avec la même stratégie, des modèles bilinéaires qui modélise le mieux possible le comportement thermique dans les systèmes PV/T-Bât. Une étude d’optimisation du système multi-physique en introduisant une étude paramétrique est menée en terme afin d’étudier la sensibilité des paramètres sur le rendement énergétique. Cependant, les études d’optimisation paramétriques restent limitées et insuffisantes à cause de la résolution mono-objectif du problème d’optimisation, alors que notre système manifeste un comportement combiné et multi-physique de nature contradictoire. Pour ce faire, une optimisation multi-objectifs est introduite avec trois fonctions objectif en employant l’algorithme génétique NSGA-II. L’originalité de notre méthode est d’employer l’algorithme en régime dynamique afin de choisir la conception du système la plus optimale. Les résultats trouvés peuvent contribuer à améliorer la conception des systèmes PV/T-Bât et l’optimisation de leur fonctionnement / This thesis consists to develop a simplified model approach for Photovoltaic / Thermal (PV / T) combined solar system based on state-space reduced order model. The building integrated solar systems are getting high attention in these last decencies, as well as the performance increasing which require high numerical methods to improve the design and reducing the costs. In one hand, the CFD methods are useful tool to predict the energy (mechanical and thermal) of combined PV/T systems, but it requires an expensive computing capacities and exorbitant calculation times, On the other hand, the PV/T systems can generate both the electrical and thermal flows, and requires an easily and performant optimization model. An alternative is to develop methods that are adapted to the physical problem under consideration, treating the multi-physics aspect while remaining in a reasonable data size and reduced computing time. The first part of the current thesis consists to develop a mathematical model which consists of reducing the dimensions of the governed equations. Based on the symmetry of the geometry, the system is subdivided into control areas which governed by the dimensionless Biot (Bi) and Fourier (Fo) numbers. The obtained results in dynamic mode can provide output key parameters, more particularly the electrical and thermal efficiencies and the dissipated hydrodynamic power. The advantage of this approach lies in the simplification of the resulting model, which is represented by a single state-space representation that groups all the physical elements of the system into dynamic mode, i.e. in continuous variation of the boundary condition. This model groups the fundamental variable, which is the temperature, and two type parameters, which are the control parameters and the design parameters. In addition, the reduced order model can be integrated into real-time operation of building-integrated PV / T (BIPV/T) systems in order to support their regulation and management of intervening flows. In order to validate the use of our model, it is necessary to test it for several cases of Building Integrated PV/T systems (BIPV/T). For this, four major configurations were studied and discussed in a linear approach; the found results show a good agreement with experimental works. A second level has been developed as part of our thesis work, which is the non-linearity in combined PV / T and BIPV/T systems; in particular, bilinear models have been developed with the same strategy which best models the thermal behavior in BIPV/T systems. The second issue, related to Multi-physics aspect. Furthermore, in order to evaluate the sensitivity of the parameters, a parametric optimization has been made with dimensionless numbers. However, parametric optimization studies remain limited and insufficient because of the single-objective resolution of the optimization problem, whereas our system manifests a mixed and multi-physics behavior with contradictory nature. To do this, a multi-objective optimization is introduced with three objective functions using the NSGA-II genetic algorithm. The originality of our method is to use the algorithm in dynamic mode in order to choose the design of the optimal system. The found results can contribute to the design of BIPV/T systems and optimize their operation
Identifer | oai:union.ndltd.org:theses.fr/2018LORR0259 |
Date | 03 December 2018 |
Creators | Ouhsaine, Lahoucine |
Contributors | Université de Lorraine, Université Abdelmalek Essaâdi (Tétouan), El Ganaoui, Mohammed, Mimet, Abdelaziz |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds