Cette thèse concerne l'analyse de la stabilité et la synthèse de lois de commande pour les multimodèles. La démarche proposée est exclusivement basée sur la deuxième méthode de Lyapunov et sa formulation en termes d'Inégalités Matricielles Linéaires (LMI). L'étude que nous avons menée est organisée autour de deux axes : le premier traite l'analyse de la stabilité par des fonctions de Lyapunov quadratiques, le deuxième fait appel aux fonctions de Lyapunov non quadratiques. Dans le volet consacré à la méthode quadratique, nous avons développé des conditions suffisantes de stabilité en nous appuyant sur les propriétés des M-matrices. La conception de multiobservateurs dans le cas de variables de décision non mesurables est abordée ainsi que celle de multiobservateurs à entrées inconnues. Une loi de commande statique non linéaire basée sur le retour de sortie est également proposée. Deux techniques de synthèse de cette loi de commande sont exposées. La première est basée sur une formulation convexe sous forme de LMI. La deuxième technique, quant à elle, est basée sur la transformation du problème (non convexe) de synthèse en un problème de complémentarité sur le cône. Pour réduire le pessimisme de la méthode quadratique, deux types de fonction de Lyapunov non quadratiques sont considérées : les fonctions dites polyquadratiques et les fonctions quadratiques par morceaux. En utilisant la procédure S, les conditions de stabilité obtenues sont formulées sous forme de LMI. Ces résultats ont abouti à réduire considérablement le conservatisme de la méthode quadratique et permettent d'envisager des extensions intéressantes concernant la commande par retour d'état ou de sortie ainsi que l'estimation d'état des multimodèles. Les conditions obtenues étant bilinéaires par rapport aux variables de synthèse, elles sont résolues en utilisant des algorithmes de linéarisation ou à l'aide de formulation LMI sous contrainte de rang.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00004605 |
Date | 09 December 2002 |
Creators | Chadli, Mohammed |
Publisher | Institut National Polytechnique de Lorraine - INPL |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds