Return to search

ConstruÃÃes dos nÃmeros reais voltadas para os professores da rede bÃsica de ensino / Construction of real numbers facing teachers of basic network of education

CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Este trabalho tem como objetivo mostrar que o conjunto dos nÃmeros reais à um corpo ordenado completo e que, a menos de um isomorfismo, à Ãnico. Este trabalho à voltado para todos aqueles que tenham interesse em MatemÃtica, sobretudo, para os professores de MatemÃtica do ensino mÃdio que utilizam as propriedades do conjunto dos nÃmeros reais sem conhecer a teoria matemÃtica envolvida. Para tanto, à necessÃrio caracterizar o conjunto dos reais a fim de provar suas propriedades. Aqui, utilizamos duas construÃÃes, a saber: os reais via sequÃncias de Cauchy devido a Cantor e os reais via Cortes de Dedekind. A partir dessas caracterizaÃÃes, conseguimos construir um corpo K munido das operaÃÃes de soma e multiplicaÃÃo onde mostramos que ele cumpre as condiÃÃes da definiÃÃo de corpo. Definida uma relaÃÃo de ordem em K, mostramos que tal corpo à ordenado e, alÃm disso, conseguimos mostrar que todo subconjunto de K admite supremo, o que quer dizer que tal corpo à completo. Finalmente, mostramos que qualquer outro corpo ordenado completo que possa, por ventura, existir à uma mera caracterizaÃÃo de ℝ, o que quer dizer que ℝ à Ãnico, a menos dessas possÃveis outras caracterizaÃÃes. Tal caracterizaÃÃo serà chamada de isomorfismo que à uma funÃÃo bijetora de ℝ para K. / This work aims to show that the set of real numbers is a complete ordered field that, within an isomorphism, is unique. This work is aimed at all those who are interested in mathematics, especially for that high school math teacher who uses the real numbers of the set of properties without knowing the mathematical theory involved. Therefore, it is necessary to characterize the set of the real in order to prove their properties. Here, we use two buildings, namely: the real via Cauchy sequences due to Cantor and the real via Dedekind cuts. From these characterizations, we can build a field K equipped with the addition and multiplication operations which show that it meets the definition of field conditions. Set an order relation in K, we show that such a body is ordered and in addition, we show that every subset of K admits supreme, which means that such a field is complete. Finally, we show that any complete ordered field that can, perchance appear is a mere characterization of ℝ, which means that ℝ is unique, unless these possible other characterizations. This characterization will be called isomorphism which is a function bijetora of ℝ to K.

Identiferoai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:9772
Date11 June 2015
CreatorsFernando AraÃjo Ribeiro
ContributorsMarcelo Ferreira de Melo, Marcos Ferreira de Melo, Francisco Regis Vieira Alves
PublisherUniversidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT), UFC, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds