Return to search

Development and Characterization of Compression Molded Flax Fiber-Reinforced Biocomposites

Flax fibers are often used as reinforcement for thermoset and thermoplastic to produce biocomposite products. These products exhibit numerous advantages such as good mechanical properties, low density, and biodegradability. Thermoplastics are usually reinforced with flax fiber using injection molding technology and limited research has been done on compression molded thermoplastic biocomposite. Therefore, commercial thermoplastic high density polyethylene (HDPE) and polypropylene (PP) were selected for developing compression molded flax reinforced biocomposites in this research project. The main goal of this research was to develop compression molded biocomposite board using Saskatchewan flax fiber and investigate the effect of flax fiber and processing parameters (molding temperature and molding pressure) on the properties of biocomposite. <p>The fiber was cleaned and chemically treated with alkaline and silane solution that modified the fiber surface. Chemical treatments significantly increased the mechanical properties due to better fiber-polymer interfacial adhesion and also reduced the water absorption characteristics. The silane treatment showed better results than alkaline treatment. Differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) test were performed to study the thermal and morphological properties of the untreated and chemically treated flax fiber. Flax fiber and thermoplastic resin was mixed using a single-screw extruder to ensure homogenous mixing. HDPE- and PP-based biocomposites were developed through compression molding with three different pretreated flax fiber (untreated, alkaline, silane treated fiber), three levels of fiber content, two levels of molding temperature and two levels of molding pressure. <p>Increase in fiber content increased composite color index, density, water absorption, tensile strength, Youngs modulus, bending strength, and flexural modulus. However for the HDPE composites, tensile and bending strength decreased after 20% flax fiber loading. For the PP composites the, tensile and bending strength decreased after 10% flax fiber loading. Analysis of variance (ANOVA) was performed to quantitatively show the significant effects of the process variables (molding temperature, pressure, and fiber content) and their interactions on the response variables (physical and mechanical properties of biocomposites). The duncan multiple range test (DMRT) was also performed to compare the treatment means. Superposition surface methodology was adapted for both HDPE and PP composites to determine the optimum values of process variables.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-07082008-154903
Date15 July 2008
CreatorsRana, Anup
ContributorsTabil, Lope, Evitts, Richard, Panigrahi, Satya, Chang, Peter, Kozinski, Janusz
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-07082008-154903/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds