O comportamento do escoamento supersônico no interior de bocais convergente-divergente retangulares é investigado numericamente, comparando-se quatro bocais com diferentes seções divergentes, com a mesma razão de aspecto AR=1.14 e mesma relação áreas da saída e da garganta dos bocais NAR=1.43. Os bocais são submetidos a diferentes pressões de admissão do fluido de trabalho, mantendo-se a relação entre a pressão de admissão e de descarga constante NPR=5. As simulações consideram o escoamento em regime permanente, compressível, viscoso, com abordagem baseada na massa específica (abordagem acoplada) , juntamente com o modelo de turbulência − /SST. A qualidade dos resultados é medida empregando-se três níveis de refino da discretização do domínio computacional, observandose a ordem de convergência e o índice de convergência de malhas GCI. Os resultados numéricos mostram que o número de Mach e a temperatura do fluido de trabalho independem da pressão de admissão, ao contrário do comportamento da pressão local e da massa específica. As propriedades do escoamento são fortemente dependentes da variação da geometria, e a variação do ângulo da seção divergente provoca uma mudança direta do número de Mach e inversa da pressão, da temperatura e da massa específica do escoamento no interior dessa seção. As simulações são comparadas com os resultados da teoria isentrópica e mostram que a linha sônica é deslocada do centro geométrico da garganta dos bocais para cada geometria simulada. A comparação com a teoria e com dados experimentais mostra desvios inferiores a 6x10-3 %. O uso do modelo de turbulência − / SST é capaz de resolver o escoamento com boa precisão, prevendo bem seu perfil de velocidades, as ondas de expansão de Prandtl-Meyer, juntamente com as interações dessas ondas com a camada limite. / The behavior of the supersonic flow inside rectangular convergent-divergent nozzle is investigated numerically by comparing four nozzles with different divergent sections, with a common aspect ratio AR=1.14, and the same nozzle exit-to-throat area ratios NAR=1.43. Nozzles are subject to several working fluid inlet pressures, maintaining a constant pressure ratio NPR=5. Simulations assume the flow in steady state, compressible, viscous, using a coupled approach with the turbulence model − /SST. The quality of results is measured by employing three refining levels of the computational domain discretization, observing the order of convergence and the grid convergence index GCI. Numerical results show that the Mach number and the temperature of the working fluid are independent of the inlet pressure, unlike the behavior of local pressure and the density. Flow properties are strongly dependent on the geometry variation, and the change on the angle of divergent section causes a direct effect on the Mach number and inverse on the pressure, the temperature and the density of the flow in this section. Simulations are compared to the results of the isentropic theory and show that the sonic line is offset from the geometric center of the throat nozzle, for each simulated geometry. Results from this work are compared to experimental and theoretical data and show deviations below 6x10-3 %. The − / SST turbulence model is able to solve the flow with good accuracy, and predicts its velocity profile, Prandtl-Meyer expansion waves, and their interactions with the boundary layer.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/149839 |
Date | January 2016 |
Creators | Berchon, Luciano da Silva |
Contributors | Schneider, Paulo Smith, Beck, Paulo Arthur |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds