Return to search

Estudo do conceito de serendipidade como base para novas abordagens ao problema da converg?ncia prematura

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-01-27T12:26:53Z
No. of bitstreams: 1
FabioAugustoProcopioDePaiva_TESE.pdf: 11863653 bytes, checksum: ea2b87d3ec0832aff7e2d5c1c7eda033 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-01-30T12:32:55Z (GMT) No. of bitstreams: 1
FabioAugustoProcopioDePaiva_TESE.pdf: 11863653 bytes, checksum: ea2b87d3ec0832aff7e2d5c1c7eda033 (MD5) / Made available in DSpace on 2017-01-30T12:32:55Z (GMT). No. of bitstreams: 1
FabioAugustoProcopioDePaiva_TESE.pdf: 11863653 bytes, checksum: ea2b87d3ec0832aff7e2d5c1c7eda033 (MD5)
Previous issue date: 2016-07-01 / Em muitos problemas de engenharia, ? comum o estudo de um tipo de processo que se comporta, via de regra, como um sistema din?mico. Esse tipo de sistema possui a peculiaridade de poder ser modelado por meio de um conjunto de equa??es que evolui ao longo do tempo para representar o comportamento modelado do sistema. Para resolver esses problemas de engenharia, diversos m?todos de Computa??o Bio-inspirada v?m sendo propostos como solu??o em diferentes contextos. Entre esses m?todos, est? uma categoria de algoritmos conhecida como Intelig?ncia de Enxames. Apesar do relativo sucesso, a maioria dos m?todos bio-inspirados enfrenta um problema muito comum conhecido como converg?ncia prematura. A converg?ncia prematura ocorre quando um enxame (ou uma popula??o) perde a sua capacidade de gerar diversidade e, como consequ?ncia, converge para uma solu??o sub-?tima, prematuramente. Na literatura, existem diversas abordagens que se prop?em a resolver esse problema. Esta tese prop?e uma nova abordagem que ? baseada em um conceito chamado serendipidade que, normalmente, ? aplicado no dom?nio dos Sistemas de Recomenda??o. Para avaliar a viabilidade da adapta??o desse conceito ao novo contexto, uma variante chamada Serendipity-Based Particle Swarm Optimization (SBPSO) foi implementada e, posteriormente, comparada com a Particle Swarm Optimization (PSO) padr?o e algumas variantes apresentadas na literatura. Para realizar os diversos experimentos computacionais, foram utilizadas 16 fun??es de benchmark bastante comuns. Em todos os experimentos, os resultados da SBPSO se mostraram promissores e apresentaram um bom comportamento de converg?ncia, superando a PSO padr?o e as variantes estudadas no que diz respeito ? qualidade da solu??o, ? capacidade de encontrar o ?timo global, ? estabilidade das solu??es e ? capacidade de reiniciar o movimento do enxame ap?s a estagna??o ter sido detectada. / IN the literature, it is common to find many engineering problems which are used to present the
effectiveness of the optimization algorithms. Several methods of Bio-Inspired Computing have
been proposed as a solution in different contexts of engineering problems. Among these methods,
there is a class of algorithms known as Swarm Intelligence. Despite the relative success, most of
these algorithms faces a common problem known as premature convergence. It occurs when a
swarm loses its ability to generate diversity and consequently converges to a suboptimal solution
prematurely. There are several approaches proposed to solve this problem. This doctoral thesis
proposes a new approach based on a concept called serendipity. It is usually applied in the field
of Recommender Systems. To validate the feasibility of adapting this concept to the new context,
a variant called Serendipity-Based Particle Swarm Optimization (SBPSO) has been implemented
considering two dimensions of serendipity: chance and sagacity. To evaluate the presented proposal,
two sets of computer experiments were performed. Sixteen reference functions which are
common in the evaluation of optimization algorithms were used. In the first set of experiments,
four functions were used to compare SBPSO to Particle Swarmoptimization (PSO) and some literature
variants. In the second ones, twelve other functions were used, but for high dimensionality
and a larger number of evaluations of the objective function. In all experiments, the results of the
SBPSO were promising and presented a good convergence behaviour with regard to: a) quality of
the solution, b) ability to find the global optimum, c) stability of solutions and d) ability to resume
the swarmmovement after stagnation has been detected.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/21795
Date01 July 2016
CreatorsPaiva, F?bio Augusto Proc?pio de
Contributors53820126449, Bastos Filho, Carmelo Jos? Albanez, 00000000000, Silva, Cl?udio Rodrigues Muniz da, 46533435434, Souza, Givanaldo Rocha de, 03464900495, Mattozo, Teofilo C?mara, 13062549491, Costa, Jos? Alfredo Ferreira
PublisherPROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds