Les dernières années, la taille des collections vidéo a connu une forte augmentation. La recherche et la navigation efficaces dans des telles collections demande une indexation avec des termes pertinents, ce qui nous amène au sujet de cette thèse, l'indexation sémantique des vidéos. Dans ce contexte, le modèle Sac de Mots (BoW), utilisant souvent des caractéristiques SIFT ou SURF, donne de bons résultats sur les images statiques. Notre première contribution est d'améliorer les résultats des descripteurs SIFT/SURF BoW sur les vidéos en pré-traitant les vidéos avec un modèle de rétine humaine, ce qui rend les descripteurs SIFT/SURF BoW plus robustes aux dégradations vidéo et qui leurs donne une sensitivité à l'information spatio-temporelle. Notre deuxième contribution est un ensemble de descripteurs BoW basés sur les trajectoires. Ceux-ci apportent une information de mouvement et contribuent vers une description plus riche des vidéos. Notre troisième contribution, motivée par la disponibilité de descripteurs complémentaires, est une fusion tardive qui détermine automatiquement comment combiner un grand ensemble de descripteurs et améliore significativement la précision moyenne des concepts détectés. Toutes ces approches sont validées sur les bases vidéo du challenge TRECVid, dont le but est la détection de concepts sémantiques visuels dans un contenu multimédia très riche et non contrôlé.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00959081 |
Date | 04 December 2013 |
Creators | Strat, Sabin Tiberius |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds