Dans les systèmes de vidéosurveillance, les algorithmes de vision assistée par ordinateur ont joué un rôle crucial pour la détection d'événements liés à la sûreté et la sécurité publique. Par ailleurs, l'incapacité de ces systèmes à gérer plusieurs scènes de foule est une lacune bien connue. Dans cette thèse, nous avons développé des algorithmes adaptés à certaines difficultés rencontrées dans des séquences vidéo liées à des environnements de foule d'une ampleur significative comme les aéroports, les centres commerciaux, les rencontres sportives etc. Nous avons adopté différentes approches en effectuant d'abord une analyse globale du mouvement dans les régions d'intérêt de chaque image afin d'obtenir des informations sur les comportements multimodaux de la foule sous forme de structures spatio-temporelles complexes. Ces structures ont ensuite été utilisées pour détecter des événements de surveillance inhabituels au sein-même de la foule. Pour réaliser nos expériences, nous nous sommes principalement appuyés sur trois ensembles de données qui ont suscité notre réflexion. Les résultats reflètent à la fois la qualité et les défauts de ces approches. Nous avons également développé une distance pseudo-euclidienne.Pour démontrer son utilité, une méthodologie qui lui est propre a été utilisée pour la détection de plusieurs événements de surveillance standards issus de la base TRECVID2008. Certains résultats montrent la robustesse de cette méthodologie tandis que d'autres soulignent la difficulté du problème. Les principaux défis portent, entre autres, sur le flux massif de personnes, l'importance de l'occlusion, la réflexion, les ombres, les fluctuations, les variations de la taille de la cible, etc. Cependant, nos idées et nos expériences de ces problèmes d'ordre pratique ont été particulièrement utiles. De plus, cette thèse développe un algorithme permettant de suivre une cible individuelle dans le cadre de plusieurs scènes de foule. Les séquences vidéo de la base de PETS2009 Benchmark ont été prises en compte pour évaluer les performances de cet algorithme. Si on analyse ses avantages et ses inconvénients, celui-ci fait toujours preuve d'une grande exactitude et sensibilité vis-à-vis des effets de variationde la lumière, ce qui atteste de sa grande efficacité même lorsque la luminosité baisse, que la cible entre ou sort d'une zone d'ombre ou en cas de lueur soudaine.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00841465 |
Date | 16 July 2010 |
Creators | Sharif, Md. Haidar |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds