In this thesis, parametric studies have been performed for a soil-steel compositebridge to determine and investigate the most influential parameters on the dynamicresponse.High-speed railways are currently being planned in Sweden by the Swedish TransportAdministration with train speeds up to 320 km/h. According to the European designcodes, bridges must be verified with respect to dynamic resonance behaviour for trainspeeds exceeding 200 km/h. However, there are no guidelines or design criterion forperforming dynamic verifications of soil-steel composite bridges. The aim of thisthesis has therefore been to investigate the influence of the geometry and materialproperties of soil-steel composite bridges on their dynamic response.This thesis is based upon the frequency domain approach for dynamic analysis ofa soil-steel composite bridge using finite element software. In 2018, field measurementswere performed on a soil-steel composite bridge in Hårestorp, Sweden. Areference finite element model was developed based on previous research and wasverified against these field measurements. Parametric studies where performed byextrapolating the geometry of the reference model, focusing primarily on the crownheight, culvert span width and the location of the bedrock. Sensitivity analyses ofthe density- and stiffness of the soil was also performed.The parametric studies showed that the crown height was the most influential parameterwith respect to the amplitude of the resonance peak. Increasing it from 1 mto 3 m reduced the amplitude by approximately 70 %. An increased span width ofthe culvert was found to reduce the frequency and amplitude of the resonance peak,however increasing the stiffness of the culvert increased the resonance frequency.The position of the rock layer also reduced the amplitude of the resonance peak iflowered, likely because of lessened wave reflection. The lowest rock level investigatedshowed a significant decrease of more than 70 % in amplitude. However, the modelused to calculate this response was heavily extrapolated and thus difficult to verify.The sensitivity analyses showed that the soil density- and stiffness was negativelyand positively correlated with the resonance frequency, respectively. Additionally,the soil density lowered the amplitude of the resonance peak if increased.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-254343 |
Date | January 2019 |
Creators | Ljung, Jonathan |
Publisher | KTH, Bro- och stålbyggnad |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ABE-MBT ; 19441 |
Page generated in 0.0023 seconds