Current concentrated solar power plants (CSP) use molten salt at 565°C as a heat transfer and energy storage fluid. Due to thermal energy storage (TES), these solar plants can deliver dispatachable electricity to the grid; however, the levelized cost of electricity (LCOE) for these plants is 12-15 c/kWh, about 2.5 times as high as fossil fuel electricity generation. Molten salt technology limits peak operating temperatures to 565°C and a heat engine efficiency of 40%. Liquid metal (LM), however, can reach >1350°C, and potentially utilize a more efficient (60%) heat engine and realize cost reductions. A 1350 °C LM-CSP plant would require ceramic containment, inert atmosphere containment, additional solar flux concentration, and redesigned internal receiver. It was initially unclear if these changes and additions for LM-CSP were technically feasible and could lower the LCOE compared to LS-CSP. To answer this question, a LM-CSP plant was designed with the same thermal input as a published LS-CSP plant. A graphite internal cavity receiver with secondary concentration heated liquid Sn to 1400°C and transferred heat to a 2-phase Al-Si fluid for 9 hours of thermal energy storage. Input heat to the combined power cycle was 1350°C and had 60% thermal efficiency for a gross output of 168 MW. The cost of this LM-CSP was estimated by applying material cost factors to the designed geometry and scaling construction costs from published LS-CSP estimates. Furthermore, graphite was experimentally tested for reactivity with liquid Sn, successful reaction bonds, and successful mechanical seals. The result is switching to molten metal can reduce CSP costs by 30% and graphite pipes, valves, and seals are possible at least at 400°C.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54937 |
Date | 27 May 2016 |
Creators | Wilk, Gregory |
Contributors | Henry, Asegun |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0019 seconds