Return to search

Transportation of Precious Metal Slurry

Outotec Sweden AB works in the field of precious metal refining. Silver electrorefining is one of Outotec’s technologies widely applied in numerous silver refining plants worldwide. During this project a specific section in a silver refinery plant has been investigated. Today’s system provided by Outotec utilises gravity as a means of transport of the slurry consisting of refined silver crystals and silver electrolyte. The slurry is directed from the electrolysis cells through pipes mounted in an angle towards a separation tank. This solution requires three floors of the building of the refinery plant. The goal of this project was to develop concepts which would transport the slurry of silver crystals from the electrolysis cells to a separation tank within a single floor of the building. The implementation of such a system would result in lowering the overall investment cost of the refinery by at least 7 %. Ulrich & Eppinger’s product development process has been utilised in this thesis work which is a six step sequential method for development of products. Through this process, four concepts for transportation of silver crystal slurry were developed, analysed and cost estimated - Syringe, Drop to circulation tank, Suction Pump and Conveyor. The syringe concept eliminated the need for a single floor of the refinery, which translated to total projected investment cost of 337 000 SEK and an overall investment savings of 8.3 %. Drop to circulation tank eliminated the need for two floors which lead to a total estimated cost of 862 000 SEK. This corresponded to an overall investment savings of 16.5 %. The two final concepts - suction pump and conveyor was estimated to cost 346 000 and 337 000 SEK respectively. Both of the concepts resulted in a total projected savings of the overall investment by 8.3%, eliminating the need for one of the three floors in the refinery. The conclusion is that each of the concepts developed surpassed the goal of lowering the overall investment of the refinery by at least 7%. Three of the four concepts eliminated the need for one floor while the final one, drop to circulation tank, eliminated the need for two of the three floors. The concepts must be tested before implemented. This could either be conducted by approximating the electrolyte as water and silver crystals as metal shavings or by sludge. It would however be beneficial if a test rig is constructed for each concept and they are tested with the same mixture of silver slurry that is transported in Outotec’s existing refineries. The circulation tank should also be installed on the same floor as the electrolysis cells and the separation tank for the syringe, conveyor and suction pump concepts. This was never investigated by the authors since it was a limitation stated as the project was initiated. This component was however included in the drop to circulation tank concept since it was considered being part of the transportation system. If the circulation tank is installed on the same floor as the other components it will result in eliminating the need for two floors, which would ultimately lead to a substantial decrease in overall investment cost.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-78993
Date January 2020
CreatorsÖgren, Erik, Selberg, Oscar
PublisherLuleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds