L'imagerie polarimétrique consiste à acquérir des images contenant des informations relatives à la polarisation de la lumière diffusée par une scène. L'objectif de cette thèse est d'utiliser les propriétés de ce type d'imagerie afin de d'améliorer le contraste entre plusieurs objets d'intérêt.Dans le cadre de l'optimisation du contraste entre deux objets d'intérêt, nous démontrons que, si l'on travaille à temps d'acquisition fixe, c'est l'acquisition d'une unique image avec des états d'illumination et d'analyse optimisés qui permet d'atteindre les meilleures performances. C'est pourquoi nous avons développé un imageur pouvant générer et analyser n'importe quel état de polarisation sur la sphère de Poincaré, en utilisant des cellules à cristaux liquides. Ces états peuvent être contrôlés afin de faire varier le contraste dans les images et nous montrons que les ''états optimaux" permettant de maximiser le contraste dépendent des conditions de mesure. En particulier, la valeur des états de polarisation maximisant le contraste entre deux objets d'intérêt dépend des bruits de mesure (bruit de détecteur, bruit de Poisson, Speckle) ainsi que des fluctuations spatiales des propriétés polarimétriques dans la scène. Une mauvaise estimation de la source de bruit peut donc amener à une perte significative de contraste.Nous nous intéressons ensuite à un scénario d'imagerie plus complexe où la scène peut être illuminée de manière non-uniforme. Nous proposons une méthode d'acquisition utilisant l'ensemble des degrés de liberté fournis par notre imageur et montrons que cette méthode permet d'augmenter significativement le contraste par rapport aux résultats obtenus avec d'autres types d'imagerie comme l'imagerie OSC (Orthogonal State Contrast).Nous étendons ensuite nos études à un cas ''multicibles" où plus de deux objets doivent être distingués. Nous montrons notamment que l'accroissement du nombre d'images peut dégrader le contraste et qu'il existe un nombre optimal d'images à acquérir si l'on travaille à temps d'acquisition fixe.Enfin, nous proposons une méthode visant à automatiser notre imageur pour l'optimisation du contraste en combinant de manière itérative l'acquisition d'images polarimétriques optimisées et un algorithme de segmentation par contours actifs statistiques. Des premiers résultats expérimentaux mettent en évidence l'avantage de cette intégration d'algorithmes de traitement numérique au c\oe ur du processus d'acquisition de l'image.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00874686 |
Date | 02 October 2013 |
Creators | Anna, Guillaume |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds