Depuis leur découverte, les matériaux organiques π-conjugués retiennent l'attention des chercheurs. Ces molécules semi-conductrices sont intéressantes pour leurs propriétés optoélectroniques, leur coût compétitif et leur bonne solubilité dans les solvants usuels. Ce dernier attribut leur permet d'être imprimées à grande échelle via différentes méthodes d'impression, ouvrant la porte au domaine de l'électronique imprimée. L'une des applications possibles de ces semi-conducteurs est comme matériaux actifs en cellules photovoltaïques organiques (OPV, pour organic photovoltaics). En effet, deux matériaux π-conjugués peuvent constituer la couche active du dispositif pour générer un photocourant : un semi-conducteur de type p (donneur d'électrons) et un semi-conducteur de type n (accepteur d'électrons). Depuis les 20 dernières années, des polymères π-conjugués ont été principalement étudiés comme matériaux de type p. Bien que plusieurs structures moléculaires présentent des performances très compétitives tout en permettant une stabilité accrue, leur synthèse peut être parfois complexe et coûteuse. Classiquement, des dérivées du fullerène étaient utilisés comme matériaux de type n avec ces polymères. Cependant, celui-ci participe très peu à l'absorption de la lumière et présente certains inconvénients face à la stabilité du dispositif. Une nouvelle gamme de matériaux de type n a fait son apparition depuis 2015 : les petites molécules π-conjugués de type n (NFA, pour non-fullerene acceptors). Ces nouvelles structures permettent d'atteindre continuellement de nouveaux records d'efficacité en cellules photovoltaïques organiques. Ce projet de doctorat vise à étudier différents aspects menant à un dispositif photovoltaïque organique à l'affut des enjeux de la mise à l'échelle. Afin d'obtenir des matériaux polymères performants et peu coûteux, la réaction de polymérisation doit être minutieusement optimisée. Dans un premier temps, l'étude de la polymérisation par (hétéro)arylation directe (DHAP) a été effectuée sur un polymère de type p connu, le PPDT2FBT. La DHAP réduit grandement le coût final du matériau, mais nécessite beaucoup d'optimisation par rapport aux méthodes classiques. Ensuite, ce polymère a été étudié en OPV en gardant l'objectif de la mise à l'échelle des dispositifs. Suivant ces résultats, les travaux ont visé à développer de nouveaux matériaux de type n à jumeler avec ce premier polymère. Vue la complexité synthétique de ces matériaux, des méthodes computationnelles ont été utilisées afin de modéliser les propriétés optoélectroniques. Dans un premier volet, ces méthodes computationnelles ont été méticuleusement optimisées pour ces types de molécules. Ensuite, ces méthodes ont été utilisées pour la conception de nouveaux matériaux de type n. Les travaux de cette thèse montrent de nombreux avancements dans différents aspects de la fabrication de cellules photovoltaïques organiques, soit la conception des matériaux, leur synthèse et la fabrication du dispositif. En plus de matériaux π-conjugués étudiés de façon expérimentale, le développement de plusieurs outils, tant synthétiques que computationnels, ont fait l'objet de ce projet. Les dispositifs les plus performants étudiés dans cette thèse ont montré des efficacités de conversion de puissance au-dessus de 8% et ce, en respectant plusieurs critères de la mise à l'échelle. / Since their discovery, organic π-conjugated materials have gained a lot of attention in the field of functional materials. These semiconducting molecules are particularly interesting for their optoelectronic properties, competitive cost and solubility in common solvents, which enables ink processability. This aspect allows these semiconductors to be fully printed at a large scale, opening-up the field of printed electronics. One of the applications for these materials is as organic photovoltaics (OPVs). In these devices, two semiconductors are integrated in the active layer: a p-type and an n-type material. Most research from the last 20 years has focused on π-conjugated polymers as p-type. Even though several highly efficient molecular structures have been developed, their synthetic complexity remains an issue regarding the material cost. On the other hand, fullerene derivatives were mainly used as n-type materials with these polymers. However, they have poor contributions to the light-harvesting capacity of the photovoltaic cell. More recently, a new class of n-type materials called non-fullerene acceptors (NFAs) has gained a lot of attention. These new molecular structures continuously achieve efficiency records in OPVs. The scope of this project is to study the different aspect leading to a scalable organic photovoltaic device. To get an efficient conjugated polymer at low cost, the polymerization reaction must be carefully optimized. First, this project aims to study the direct (hetero)arylation polymerization (DHAP) of the well-known p-type polymer PPDT2FBT. This polymerization method reduces the material cost, as it decreases the number of synthetic steps required for monomers. However, more optimization is needed compared to traditional methods. The fabrication of OPVs is then investigated while keeping in mind the process scalability. Following these results, NFAs have been developed to be paired with the PPDT2FBT. Since these materials are complex to synthesize, computational methods have been employed to model the optoelectronic properties. The computational methods were first optimized for several NFAs to judge their reliability. Then, they were used to design new materials for OPV. This thesis consolidates several steps in the fabrication of organic photovoltaics, from the molecular design of the organic semiconductors to their synthesis and characterization of devices. Moreover, this work has contributed by developing useful tools, both synthetic and computational. The most efficient photovoltaic device developed in this thesis showed a power conversion efficiency over 8% while having scale-up requirements.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/103965 |
Date | 13 December 2023 |
Creators | Mainville, Mathieu |
Contributors | Leclerc, Mario, Johnson, Paul A. |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxxi, 308 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0031 seconds