La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales
faibles dans la littérature économétrique, c’est-à-dire les situations où les variables
instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu
que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du
ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent
de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements
à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995),
Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton
(1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec
la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats
peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson
et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant,
il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification
lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève
la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines
variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément,
qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides?
Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales
pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui
sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer
les proédures de sélection d’instruments qui demeurent valides même en présence d’identification
faible?
Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte
des réponses à ces questions à travers quatre essais.
Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008)
2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux
statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la
statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre
qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous
montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments
invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité
(forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais
la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de
niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des
double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite,
lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité
converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent
vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous
caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique
des statistiques demeure la même que dans le cas des instruments valides (malgré la présence
des instruments invalides).
Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type
Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une
analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau)
et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments
faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions
des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit
échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec
les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments
faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des
tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests
n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)].
Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de
Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur
en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon
fini.
Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des
moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments
sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk
(2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance
par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales
ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les
conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses.
Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications
empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème
bien connu du rendement à l’éducation.
Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas
où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle
version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement
aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar-
Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques
qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux
nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur
quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et
l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection
de variables instrumentales. Nous illustrons les résultats théoriques par deux applications
empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les
rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait
le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût
de la firme et que le prix du fuel en est un instrument valide pour l’output.
Le quatrième essai résout deux problèmes très importants dans la littérature économétrique.
D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance
et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle
sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable
à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence
robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance
pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement
endogènes). Nous fournissons les expressions analytiques des régions de confiance et
caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure
proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement
robuste à l’hétéroscédasticité et l’autocorrélation des erreurs.
Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à
l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont
de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure
valide de sélection de variables instrumentales même s’il y a un problème d’identification. La
procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent
l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout
comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces
que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs
pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel.
Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux
d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première
application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles
[Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et
Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance
non bornées pour la covariance dans le cas où les instruments sont assez faibles. / The last decade shows growing interest for the so-called weak instruments problems in the
econometric literature, i.e. situations where instruments are poorly correlated with endogenous explanatory
variables. More generally, these can be viewed as situations where model parameters are
not identified or nearly so (see Dufour and Hsiao, 2008). It is well known that when instruments
are weak, the limiting distributions of standard test statistics - like Student, Wald, likelihood ratio
and Lagrange multiplier criteria in structural models - have non-standard distributions and often
depend heavily on nuisance parameters. Several empirical studies including the estimation of returns
to education [Angrist and Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995),
Dufour and Taamouti (2007)] and asset pricing model (C-CAPM) [Hansen and Singleton (1982,
1983), Stock and Wright (2000)], have showed that the above procedures are unreliable in presence
of weak identification. As a result, identification-robust tests [Anderson and Rubin (1949), Moreira
(2003), Kleibergen (2002), Dufour and Taamouti (2007)] are often used to make reliable inference.
However, little is known about the quality of these procedures when the instruments are invalid or
both weak and invalid. This raises the following question: what happens to inference procedures
when some instruments are endogenous or both weak and endogenous? In particular, what happens
if an invalid instrument is added to a set of valid instruments? How robust are these inference
procedures to instrument endogeneity? Do alternative inference procedures behave differently? If
instrument endogeneity makes statistical inference unreliable, can we propose the procedures for selecting
"good instruments" (i.e. strong and valid instruments)? Can we propose instrument selection
procedure which will be valid even in presence of weak identification?
This thesis focuses on structural models and answers these questions through four chapiters.
The first chapter is published in Journal of Statistical Planning and Inference 138 (2008) 2649
– 2661. In this chapter, we analyze the effects of instrument endogeneity on two identificationrobust
procedures: Anderson and Rubin (1949, AR) and Kleibergen (2002, K) test statistics, with
or without weak instruments. First, when the level of instrument endogeneity is fixed (does not
depend on the sample size), we show that all these procedures are in general consistent against
the presence of invalid instruments (hence asymptotically invalid for the hypothesis of interest),
whether the instruments are "strong" or "weak". We also describe situations where this consistency
may not hold, but the asymptotic distribution is modified in a way that would lead to size distortions
in large samples. These include, in particular, cases where 2SLS estimator remains consistent, but
the tests are asymptotically invalid. Second, when the instruments are locally exogenous (the level
of instrument endogeneity approaches zero as the sample size increases), we find asymptotic noncentral
chi-square distributions with or without weak instruments, and describe situations where the
non-centrality parameter is zero and the asymptotic distribution remains the same as in the case of
valid instruments (despite the presence of invalid instruments).
The second chapter analyzes the effects of weak identification on Durbin-Wu-Hausman (DWH)
specification tests an Revankar-Harttley exogeneity test. We propose a finite-and large-sample analysis
of the distribution of DWH tests under the null hypothesis (level) and the alternative hypothesis
(power), including when identification is deficient or weak (weak instruments). Our finite-sample
analysis provides several new insights and extensions of earlier procedures. The characterization
of the finite-sample distribution of the test-statistics allows the construction of exact identificationrobust
exogeneity tests even with non-Gaussian errors (Monte Carlos tests) and shows that such
tests are typically robust to weak instruments (level is controlled).
Furthermore, we provide a characterization of the power of the tests, which clearly exhibits
factors which determine power. We show that DWH-tests have no power when all instruments are
weak [similar to Guggenberger(2008)]. However, power does exist as soon as we have one strong
instruments. The conclusions of Guggenberger (2008) focus on the case where all instruments
are weak (a case of little practical interest). Our asymptotic distributional theory under weaker
assumptions confirms the finite-sample theory.
Moreover, we present simulation evidence indicating: (1) over a wide range cases, including
weak IV and moderate endogeneity, OLS performs better than 2SLS [finding similar to Kiviet and
Niemczyk (2007)]; (2) pretest-estimators based on exogeneity tests have an excellent overall performance
compared with usual IV estimator.
We illustrate our theoretical results through simulation experiment and two empirical applications:
the relation between trade and economic growth and the widely studied problem of returns to
education.
In the third chapter, we extend the generalized Wald partial exogeneity test [Dufour (1987)]
to non-gaussian errors. Testing whether a subset of explanatory variables is exogenous is an important
challenge in econometrics. This problem occurs in many applied works. For example, in
the well know wage model, one should like to assess if mother’s education is exogenous without
imposing additional assumptions on ability and schooling. In the growth model, the exogeneity of
the constructed instrument on the basis of geographical characteristics for the trade share is often
questioned and needs to be tested without constraining trade share and the other variables. Standard
exogeneity tests of the type proposed by Durbin-Wu-Hausman and Revankar-Hartley cannot solve
such problems. A potential cure for dealing with partial exogeneity is the use of the generalized
linear Wald (GW) method (Dufour, 1987). The GW-procedure however assumes the normality of
model errors and it is not clear how robust is this test to non-gaussian errors.
We develop in this chapter, a modified version of earlier procedure which is valid even when
model errors are not normally distributed. We present simulation evidence indicating that when
identification is strong, the standard GW-test is size distorted in presence of non-gaussian errors.
Furthermore, our analysis of the performance of different pretest-estimators based on GW-tests
allow us to propose two new pretest-estimators of the structural parameter. The Monte Carlo simulations indicate that these pretest-estimators have a better performance over a wide range cases
compared with 2SLS. Therefore, this can be viewed as a procedure for selecting variable where a
GW-test is used in the first stage to decide which variables should be instruments and which ones
are valid instruments.
We illustrate our theoretical results through two empirical applications: the well known wage
equation and the returns to scale in electricity supply. The results show that the GW-tests cannot
reject the exogeneity of mother’s education, i.e. mother’s education may constitute a valid IV for
schooling. However, the output in cost equation is endogenous and the price of fuel is a valid IV for
estimating the returns to scale.
The fourth chapter develops identification-robust inference for the covariances between errors
and regressors of an IV regression. The results are then applied to develop partial exogeneity tests
and partial IV pretest-estimators which are more efficient than usual IV estimator.
When more than one stochastic explanatory variables are involved in the model, it is often
necessary to determine which ones are independent of the disturbances. This problem arises in
many empirical applications. For example, in the New Keynesian Phillips Curve, one should like to
assess whether the interest rate is exogenous without imposing additional assumptions on inflation
rate and the other variables. Standard Wu-Durbin-Hausman (DWH) tests which are commonly
used in applied work are inappropriate to deal with such a problem. The generalized Wald (GW)
procedure (Dufour, 1987) which typically allows the construction of confidence sets as well as
testing linear restrictions on covariances assumes that the available instruments are strong. When
the instruments are weak, the GW-test is in general size distorted. As a result, its application in
models where instruments are possibly weak–returns to education, trade and economic growth, life
cycle labor supply, New Keynesian Phillips Curve, pregnancy and the demand for cigarettes–may
be misleading.
To answer this problem, we develop a finite-and large-sample valid procedure for building confidence
sets for covariances allowing for the presence of weak instruments. We provide analytic
forms of the confidence sets and characterize necessary and sufficient conditions under which they
are bounded.
Moreover, we propose two new pretest-estimators of structural parameters based on our above
procedure. Both estimators combine 2SLS and partial IV-estimators. The Monte Carlo experiment
shows that: (1) partial IV-estimators outperform 2SLS when the instruments are weak; (2) pretestestimators
have an excellent overall performance–bias and MSE– compared with 2SLS. Therefore,
this can be viewed as a variable selection method where the projection-based techniques is used to
decide which variables should be instrumented and which ones are valid instruments.
We illustrate our results through two empirical applications: the relation between trade and economic
growth and the widely studied problem of returns to education. The results show unbounded
confidence sets, suggesting that the IV are relatively poor in these models, as questioned in the
literature [Bound (1995)].
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/3886 |
Date | 02 1900 |
Creators | Doko Tchatoka, Sabro Firmin |
Contributors | Dufour, Jean-Marie |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0045 seconds