The introduction of Physical Unclonable Functions (PUFs) and lightweight consensus algorithms to aid in the bolstering of security and privacy in both IoT and IoE does show a great deal of promise not only in these areas, but in resource cost over traditional methods of blockchain. However, several previous studies make claims regarding performance of novel solutions without providing detailed information as to the physical components of their experiments. This comparative study shows that Proof of Authentication (PoAh) performs the best out of three selected consensus algorithms and that the claims made regarding the performance of PUFChain and Proof of PUF-enabled Authentication (PoP) could not be replicated in this instance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-45589 |
Date | January 2021 |
Creators | Bisiach, Jonathon, Elfving, Victor |
Publisher | Högskolan i Halmstad, Akademin för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds