De nombreuses applications industrielles spécifiques dans les secteurs tels que l'automobile, le médical et le spatial, requièrent un très haut niveau de fiabilité. Ce type d'applications fonctionnant sous des contraintes sévères (haute température, corrosion, vibration, radiations,…) impose aux industriels des spécifications particulières en termes de fiabilité et de consommation d'énergie. Dans ce contexte, les travaux menés ont pour objectif d'étudier la fiabilité des mémoires Flash embarquées pour des applications faible consommation et à forte contrainte de fiabilité. Après une introduction orientée sur les deux volets d'étude que sont la caractérisation électrique et le test de mémoires non volatiles, un modèle physique capable de modéliser le courant de SILC a été développé. Cet outil permet de répondre à la problématique de perturbations en lecture (read disturb) et donne aux designers et technologues un moyen d'estimer le taux de défaillance de cellules mémoires en fonction de paramètres physiques, géométriques et électriques ainsi que des moyens d'action afin de minimiser ce phénomène indésirable. La fiabilité (oxyde tunnel, endurance) et les performances (consommation énergétique) de la cellule Flash sont ensuite étudiées en explorant les variations de paramètres du procédé de fabrication et des conditions électriques de fonctionnement. Enfin, une étude originale menée en temps réel sur plus de 15 mois est consacrée à la fiabilité en rétention des mémoires Flash soumises aux effets des particules radiatives présentes dans l'environnement naturel terrestre. / Many specific applications used in automotive, medical and spatial activity domains, require a very high level of reliability. These kinds of applications, working under severe constraints (high temperature, corrosion, vibration, radiations…) challenge memory manufacturers and impose them particular specifications in terms of reliability and energy consumption. In this context, work presented in this thesis aim at studying embedded Flash memories reliability for low power and high reliability applications. After an introduction oriented on areas of electrical characterizations and Test of non-volatile memories, a physical model of SILC leakage current is developed. This tool is used to answer to disturbs problematic and gives to designers and technologists a way to estimate the failure rate of memory cells according to physical, geometrical and electrical parameters, giving leads to minimize this unwanted phenomenon. Reliability (tunnel oxide, cell endurance) and performances (energy consumption) of Flash memory cell are then studied exploring process parameters variations and electrical conditions optimizations. Finally, an original real-time experiment over more than 15 months is focused on Flash memories retention reliability due to irradiative particles effects of natural terrestrial environment.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4716 |
Date | 24 May 2013 |
Creators | Just, Guillaume |
Contributors | Aix-Marseille, Lalande, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0174 seconds