Le système visuel a évolué de manière à prendre en compte les conséquences de nos mouvements sur notre perception. L’évolution nous a particulièrement doté de la capacité à percevoir notre environnement visuel comme stable et continu malgré les importants déplacements de ses projections sur nos rétines à chaque fois que nous déplaçons nos yeux, notre tête ou notre corps. Des études chez l’animal ont récemment montré que dans certaines aires corticales et sous-corticales, impliquées dans le contrôle attentionnel et dans l’élaboration des mouvements oculaires, des neurones sont capables d’anticiper les conséquences des futurs mouvements volontaires des yeux sur leurs entrées visuelles. Ces neurones prédisent ce à quoi ressemblera notre environnement visuel en re-cartographiant la position des objets d’importance à l’endroit qu’ils occuperont après l’exécution d’une saccade. Dans une série d’études, nous avons tout d’abord démontré que cette re- cartographie pouvait être évaluée de manière non invasive chez l’Homme avec de simples cibles en mouvement apparent. En utilisant l’enregistrement des mouvements des yeux combinés à des méthodes psychophysiques, nous avons déterminé la distribution des erreurs de re-cartographie à travers le champ visuel et ainsi découvert que la compensation des saccades oculomotrices se faisait de manière relativement précise. D’autre part, les patterns d’erreurs observés soutiennent un modèle de la constance spatiale basé sur la re-cartographie de pointeurs attentionnels et excluent d’autres modèles issus de la littérature. Par la suite, en utilisant des objets en mouvement continu et l’exécution de saccades au travers de leurs trajectoires, nous avons mis à jour une visualisation directe des processus de re-cartographie. Avec ce nouveau procédé nous avons à nouveau démontré l’existence d’erreurs systématiques de correction pour les saccades, qui s’expliquent par une re-cartographie imprécise de la position attendue des objets en mouvement. Nous avons par la suite étendu notre modèle à d’autres types de mouvements du corps et notamment étudié les contributions de récepteurs sous-corticaux (otoliths et canaux semi-circulaires) dans le maintien de la constance spatiale à travers des mouvements de la tête. Contrairement à des études décrivant une compensation presque parfaite des mouvements de la tête, nous avons observé une rupture de la constance spatiale pour des mouvements de roulis et de translation de la tête. Enfin, nous avons testé cette re-cartographie de la position des objets compensant un déplacement oculaire avec des cibles présentées à la limite du champ visuel, une re-cartographie censée placer la position attendue de l’objet à l’extérieur du champ visuel. Nos résultats suggèrent que les aires visuelles cérébrales impliquées dans ce processus de re-cartographie construisent une représentation globale de l’espace allant au-delà du traditionnel champ visuel. Pour finir, nous avons conduit deux expériences pour déterminer le déploiement de l’attention à travers l’exécution de saccades. Nous avons alors démontré que l’attention capturée par la présentation brève d’un stimuli est re-cartographiée à sa position spatiale correcte après l’exécution d’une saccade, et que cet effet peut être observé avant même l’initiation d’une saccade. L’ensemble de ces résultats démontre le rôle des pointeurs attentionnels dans la gestion du rétablissement des positions d’un objet dans l’espace ainsi que l’apport des mesures comportementales à un champ de recherche initialement restreint à l’électrophysiologie / The visual system has evolved to deal with the consequences of our own movements onour perception. In particular, evolution has given us the ability to perceive our visual world as stableand continuous despite large shift of the image on our retinas when we move our eyes, head orbody. Animal studies have recently shown that in some cortical and sub-cortical areas involved inattention and saccade control, neurons are able to anticipate the consequences of voluntary eyemovements on their visual input. These neurons predict how the world will look like after a saccadeby remapping the location of each attended object to the place it will occupy following a saccade.In a series of studies, we first showed that remapping could be evaluated in a non-invasive fashion in human with simple apparent motion targets. Using eye movement recordingsand psychophysical methods, we evaluated the distribution of remapping errors across the visualfield and found that saccade compensation was fairly accurate. The pattern of errors observedsupport a model of space constancy based on a remapping of attention pointers and excluded otherknown models. Then using targets that moved continuously while a saccade was made across themotion path, we were able to directly visualize the remapping processes. With this novel method wedemonstrated again the existence of systematic errors of correction for the saccade, best explainedby an inaccurate remapping of expected moving target locations. We then extended our model toother body movements, and studied the contribution of sub-cortical receptors (otoliths and semi-circular canals) in the maintenance of space constancy across head movements. Contrary tostudies reporting almost perfect compensations for head movements, we observed breakdowns ofspace constancy for head tilt as well as for head translation. Then, we tested remapping of targetlocations to correct for saccades at the very edge of the visual field, remapping that would place theexpected target location outside the visual field. Our results suggest that visual areas involved inremapping construct a global representation of space extending out beyond the traditional visualfield. Finally, we conducted experiments to determine the allocation of attention across saccades.We demonstrated that the attention captured by a brief transient was remapped to the correctspatial location after the eye movement and that this shift can be observed even before thesaccade.Taken together these results demonstrate the management of attention pointers to therecovery of target locations in space as well as the ability of behavioral measurements to address atopic pioneered by eletrophysiologists.
Identifer | oai:union.ndltd.org:theses.fr/2012PA05H105 |
Date | 29 October 2012 |
Creators | Szinte, Martin |
Contributors | Paris 5, Cavanagh, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, MovingImage |
Page generated in 0.003 seconds