Este trabalho aborda os três problemas clássicos de geometria da Grécia antiga trazendo as principais histórias e conceitos necessários para compreensão dos mesmos. Construções geométricas com régua não graduada e compasso, números construtivos, corpos, números complexos e polinômios são alguns dos assuntos que antecedem o tratamento dos problemas. As construções são exibidas usando as relações existentes nas operações aritméticas, dá opções de como se representar geometricamente as quatro operações básicas e a extração de raízes quadradas, mostrando que todo problema modelado nessas condições pode ser solucionado através dos instrumentos euclidianos. Essa exibição vem ao encontro dos números construtivos, trazendo à tona quais os principais pensamentos sobre construções com régua e compasso, deixando claro a definição de construções geométricas para os gregos. São apresentados também propriedades da álgebra abstrata envolvendo conjuntos numéricos que possuem características de corpo, dentre eles os números complexos. Além disso, tratamos dos polinômios, os quais são fundamentais nas demonstração das impossibilidades clássicas. Por fim, esta pesquisa deixará claro a integração de todos os conteúdos citados acima e de que forma toda teoria pode ser organizada na realização das demonstrações da impossibilidade da duplicação do cubo, trissecção do ângulo e quadratura do círculo, frizando a mobilização dos matemáticos ao longo da história para tentar explicar tais problemas, acarretando um alto desenvolvimento da Matemática. / This work addresses the three classic problems ancient Greek geometry bringing the main stories and concepts needed to understand them. Geometric constructions with non-graded ruler and compass, building numbers, bodies, complex numbers and polynomials are some of the issues that precede the statements of problems. The buildings are displayed using the relationships in arithmetic operations, the options of how to represent geometrically the four basic operations and extraction of square roots, shows that every problem can be modeled in such conditions solucionas through Euclidean tools. This view comes against constructive rising numbers which the main thoughts of constructions with ruler and compass, making clear the definition of geometric constructions for the Greeks. It also present properties of abstract algebra involving numerical sets that have body characteristics, including complex numbers, also explains the importance of polynomials in the statement of classical impossibilities building the definition of degree of extension. Finally this research will clarify the integration of all the contents mentioned above and how every theory can be organized in the realization of doubling the cube demonstrations, angle trisection and squaring the circle, plus the mobilization of mathematicians throughout history for trying to explain such problems causing a high development of mathematics
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29112016-141932 |
Date | 04 April 2016 |
Creators | Rafael Martins Gusmai |
Contributors | Helton Hideraldo Biscaro, Denise de Mattos, Elíris Cristina Rizziolli |
Publisher | Universidade de São Paulo, Mestrado Profissional em Matemática em Rede Nacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0046 seconds