ABSTRACT
It is very common that the driven voltage of the Light emitting diode device is around 1.8eV~2.2eV, however, in its applications the voltage that applied on the circuit is higher than this specification (3 eV as usual). It will be very annoying that the design of the LED circuit should always be in series with an extra resistor in order to protect the LED. In here we propose a method with a schottky contact structure on the device that we can solve this problem. Before we proceed this method, we had better fully understand the characteristics of the material physical properties , schottky contact and ohmic contact ,also include of the process of device.
The substrate of the LED diode was chosen with N-GaP(111). The metal for the ohmic contact in this device is composed of Au/Au-Ge alloy. As to the schottky contact , the metal is formed by using Au element. The techniques for characterizing these contact properties include current-voltage (I-V), specific contact resistance (rc), ideal factor and current transport etc. The LED diode is also annealed at 450ºC for 10 minutes for improving the performance. The X-ray diffraction technique is applied to
Investigate the interface of the contact area.
The results of this experiment are summarized below:
(I) The I-V curve of Ohmic contact is linear and contact resistance irc =7
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0630100-132250 |
Date | 30 June 2000 |
Creators | Ni, Ining-Gia |
Contributors | Hsiung Chou, Kuang-Yen Hsich, Tsung-Shiew Huang, Ying-Chung Chen, Wood-Hi Cheng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0630100-132250 |
Rights | restricted, Copyright information available at source archive |
Page generated in 0.0023 seconds