Befolkningsökningen och därmed efterfrågan på energikällor som tillhandahålls från fossila bränslen leder till allvarliga miljöproblem på grund av utsläpp av växthusgaser. En annan utmaning är att effektivt hantera organisk avfall som till exempel matavfall som genereras världen över. Matproduktionen orsakar stora miljöproblem som övergödning, klimatpåverkan, kemikaliespridning, regnskogsavverkning och utfiskning. Det är därför viktigt att matsvinnet minskar men också att effektiva metoder används för hantering av avfallet för att inte belasta miljön ytterligare. En lösning för att hantera organiskt avfall, och samtidigt producera en förnybar energikälla är att använda anaerob rötning för att producera biogas. Vid anaerob rötning bryts organiskt material ner i en syrefri miljö, vilket resulterar i produktion av biogas som innehåller koldioxid och energirik metangas. Biprodukten som bildas är rötrest, som kan vidare användas som gödsel. Den anaeroba rötningsprocessen har olika utmaningar där biogasprocessen kan stabiliseras och effektiviseras genom tillsats av hydrokol. Hydrokol är ett kolrikt material framställd från hydrotermisk karbonisering av biomassa. Eftersom det finns mycket begränsad forskning på kontinuerlig anaerob rötning av matavfall med tillsats av hydrokol, och ingen forskning har utförts på hydrokol som är tillverkat från skogsindustriellt avfall, så var det viktigt och av intresse att genomföra denna studie. Syftet med studien är att undersöka hur tillsats av hydrokol påverkar biogasproduktion, metanproduktion och stabiliteten i en kontinuerlig anaerob rötningsprocess. Vidare syftar studien till att analysera effekterna av hydrokol på rötresterna som genereras, undersöka möjligheterna av sammankoppling av en befintlig rötkammare med en HTC reaktor, samt bedöma om det är ekonomiskt försvarbart att investera i hydrokol som additiv i rötningsprocessen. Målet har varit att undersöka om tillsats av hydrokol ger högre biogasutbyte, ökad metanproduktion och en stabil rötningsprocess. Målet har även varit att analysera rötresterna, utföra en materialflödesanalys över när Karlskogas rötkammare sammankopplas med en HTC reaktor, samt utföra en livscykelkostnadsanalys för att svara på om det är ekonomiskt försvarbart att investera i en HTC anläggning, alternativt att köpa in hydrokol externt. De laborativa försöket gjordes på Karlstads universitet där rötningen var en enstegs anaerob samrötning som gjordes i två kontinuerligt matade reaktorer. Inmatning och uttag av gas gjordes en gång om dagen där försöksserierna pågick under 68 dagars tid. Substratblandningarna eftersträvades efterlikna substratförhållandena på Biogasbolaget i Karlskoga. Inmatat material, det vill säga substratblandningen utgjorde 8,5% av ensilage, 0,6% av glycerol, och 90,9% av substrat (matavfall och flytgödsel). Detta förhållande är detsamma som på Biogasbolaget. I en av reaktorerna användes substratblandningen och i den andra substratblandningen och hydrokol. Hydrokolet blandades in med substratblandningen vid en koncentration på 8g/l. Materialflödesanalysen gjordes över Karlskogas biogasanläggning där flödena ritades ut i programmet Stan 2.5. LCC gjordes utifrån två olika scenarion, om hydrokol köps in externt alternativt att en HTC-reaktor ansluts till biogasanläggningen. Det valdes att beräkna utifrån scenarion om metanutbytet ökar med 17%, enligt resultat från studien gjord av Maria Kristoffersson eller om utbytet ökar med 53% enligt resultat från den här studien. Resultatet visar att tillsats av hydrokol som additiv ger en ökning på 59% för biogas utbytet och 53,5% för metanutbytet. I medelvärde från rötningsdag 27 till 68 så resulterade biogasproduktionen för hydrokolsreaktorn i 533 ml/g VS. Medelvärdet för referensreaktorn resulterade i 70 ml/g VS. Det här resulterar i en procentuell ökning med 663%. Eftersom misstankar finns att referensreaktorn inte bildar biogas som den ska har biogasproduktionen jämförts med tidigare studie som har gjorts på ungefär samma substratblandning och samma utrustning. Biogasproduktionen i medelvärde för referensreaktorn för (Leijen, 2016) resulterade i 335 ml/g VS. Procentuella skillnaden i biogasproduktion resulterar då i 59% mellan referensreaktorn och hydrokolsreaktorn. Metanproduktionen i hydrokolsreaktorn resulterade i medelvärde till 367 ml/g VS, i referensreaktorn till 18 ml/g VS och i referensreaktorn i Leijens studie till 237 ml/g VS. Jämfört med Leijens resultat resulterade den procentuella ökningen i metangasproduktion till 53,5%. En stabil rötningsprocess bekräftades genom att pH på rötresterna resulterade i 7,66 under hela rötningsprocessen. Det är möjligt att sammankoppla Karlskogas befintliga anläggning med en HTC-anläggning och återföra rötresterna för hydrokolsproduktion. Rötresterna med ett högre kol-och näringsinnehåll kan återanvändas och recirkuleras för produktion av hydrokol. Av 10 tonTS/dag rötrester som kommer ut från rötningskammaren kommer 2,46 tonTS/dag att recirkuleras för hydrokolsproduktion. Resten av rötresterna kan användas vidare som gödsel. Det är ekonomiskt försvarbart att investera i hydrokol som additiv till rötningsprocessen. Genom att bygga en HTC-anläggning, där tillsatsen av hydrokol kan ge 17% respektive 53% högre metanproduktion resulterar nettovinsten i 363 miljoner respektive 1237 miljoner kr över en 20-årsperiod. Alternativet är att köpa in hydrokol externt, där nettovinsten uppgår till 177 miljoner respektive 1052 miljoner kr över samma tidsperiod. Livscykelkostnadsanalysen visar att det är ekonomiskt mer fördelaktigt att investera i en HTC-anläggning jämfört med att köpa hydrokol externt. / The population growth and thus the demand for energy sources provided by fossil fuels leads to serious environmental problems due to greenhouse gas emissions. Another challenge is to effectively manage organic waste such as food waste generated worldwide. Food production causes major environmental problems such as eutrophication, climate impact, chemical dispersion, rainforest deforestation and depletion. It is therefore important that food waste is reduced, but also that effective methods are used to manage the waste so as not to burden the environment further. One solution for managing organic waste, while producing a renewable energy source, is to use anaerobic digestion to produce biogas. In anaerobic digestion, organic material is broken down in an oxygen-free environment, resulting in the production of biogas containing carbon dioxide and energy-rich methane gas. The by-product formed is digestate, which can be further used as fertilizer. The anaerobic digestion process has various challenges, where the biogas process can be stabilized and made more efficient by adding hydrochar. Hydrochar is a carbon-rich material produced from hydrothermal carbonization of biomass. Since there is very limited research on continuous anaerobic digestion of food waste with the addition of hydrochar, and no research has been conducted on hydrochar produced from forest industry biosludge, it was important and of interest to conduct this study. The aim of the study is to investigate how the addition of hydrochar affects biogas production, methane production and the stability of a continuous anaerobic digestion process. Furthermore, the study aims to analyze the effects of hydrochar on the digestate generated, investigate the possibilities of connecting an existing digester with an HTC reactor, and assess whether it is economically justifiable to invest in hydrochar as an additive in the digestion process. The goal has been to investigate whether the addition of hydrochar provides higher biogas yield, increased methane production and a stable digestion process. The goal has also been to analyze the digestate, perform a material flow analysis of when Karlskoga's digester is connected to an HTC reactor, and perform a life cycle cost analysis to answer whether it is economically justifiable to invest in an HTC plant, or to purchase hydrochar externally. The laboratory experiments were carried out at Karlstad University where the digestion was a single-stage anaerobic co-digestion in two continuously fed reactors. Gas was fed and withdrawn once a day and the experimental series lasted for 68 days. The substrate mixtures sought to mimic the substrate conditions at Biogasbolaget in Karlskoga. Input material, i.e. the substrate mixture consisted of 8.5% silage, 0.6% glycerol, and 90.9% substrate (food waste and liquid manure). This ratio is the same as at Biogasbolaget. One of the reactors used the substrate mixture and the other used the substrate mixture and hydrochar. The hydrochar was mixed with the substrate mixture at a concentration of 8g/l. The material flow analysis was made over Karlskoga's biogas plant where the flows were drawn in the program Stan 2.5. LCC was made based on two different scenarios, if hydrochar is purchased externally or if an HTC reactor is connected to the biogas plant. It was chosen to calculate based on scenarios if the methane yield increases by 17%, according to results from the study made by Maria Kristoffersson or if the yield increases by 53% according to results from this study. The results show that adding hydrochar as an additive gives an increase of 59% for the biogas yield and 53.5% for the methane yield. In average from digestion day 27 to 68, the biogas production for the hydrochar reactor resulted in 533 ml/g VS. The average value for the reference reactor resulted in 70 ml/g VS. This results in a percentage increase of 663%. Since there are suspicions that the reference reactor does not produce biogas as it should, the biogas production has been compared with previous studies that have been done on approximately the same substrate mixture and the same equipment. The biogas production in average for the reference reactor for (Leijen, 2016) resulted in 335 ml/g VS. The percentage difference in biogas production then results in 59% between the reference reactor and the hydrochar reactor. The methane production in the hydrochar reactor resulted on average to 367 ml/g VS, in the reference reactor to 18 ml/g VS and in the reference reactor in Leijen's study to 237 ml/g VS. Compared to Leijen's results, the percentage increase in methane gas production resulted in 53.5%. A stable digestion process was confirmed by the fact that the pH of the digestate resulted in 7.66 during the whole digestion process. It is possible to interconnect the existing Karlskoga plant with an HTC plant and recycle the digestate for hydrochar production. The digestate with a higher carbon and nutrient content can be reused and recycled for hydrochar production. Out of 10 tonTS/day of digestate coming out of the digestion chamber, 2.46 tonTS/day will be recycled for hydrochar production. The rest of the digestate can be further used as fertilizer. It is economically justifiable to invest in hydrochar as an additive to the digestion process. By building a HTC plant, where the addition of hydrochar can provide 17% and 53% higher methane production, the net profit results in 363 million and 1237 million SEK over a 20-year period. The alternative is to purchase hydrochar externally, where the net benefit amounts to SEK 177 million and 1052 million respectively over the same time period. The life cycle cost analysis shows that it is economically more advantageous to invest in an HTC plant compared to buying hydrochar externally.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-95600 |
Date | January 2023 |
Creators | Kariis, Annette |
Publisher | Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013) |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0268 seconds