Les structures treillis constituées d'un nombre important de barres sont largement utilisées, notamment en génie civil. L'étude par éléments finis de telles structures se révèle très coûteuse dès que la maille répétitive du treillis est complexe. Il s'avère intéressant de réduire la taille du problème en définissant un milieu continu équivalent. L'objectif de la première partie de ce travail est de proposer, en se plaçant dans le cadre des méthodes d'homogénéisation des milieux périodiques, une poutre de Timoshenko équivalente à une structure périodique dont l'une des dimension est grande par rapport aux deux autres. Une des originalités réside dans l'étude de cellules de base non symétriques. Par ailleurs, on s'intéresse à la prise en compte de déformations libres (par exemple, d'origine thermique) apparaissant à l'échelle microscopique. La seconde partie est consacrée à l'étude de la structure axonémale du flagelle et des cils vibratiles. Il s'agit de proposer et valider un modèle pour cette structure biomécanique complexe et d'appliquer ensuite la méthode d'homogénéisation proposée
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00534570 |
Date | 18 December 2009 |
Creators | Toscano, Jérémy |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0075 seconds