• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 2
  • Tagged with
  • 24
  • 24
  • 10
  • 10
  • 10
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique de milieux réticulés non contreventés : application aux bâtiments. / Dynamics of unbraced reticulated media : application to buildings

Chesnais, Céline 29 June 2010 (has links)
Les comportements dynamiques d’une famille de structures réticulées, c’est-à-dire constituées d’un réseau de poutres, sont étudiés à l’aide de la méthode d’homogénéisation des milieux périodiques discrets. Cette dernière permet de construire, de façon rigoureuse et en lien avec la microstructure, un milieu continu équivalent à l’échelle macroscopique lorsque la taille de la cellule de base est très petite par rapport à la longueur d’onde. Le domaine d’application de cetteméthode est également étendu à des fréquences plus élevées pour lesquelles les éléments de la cellule peuvent entrer en résonance en flexion. Cela se traduit à l’échelle macroscopique par des propriétés apparentes qui dépendent de la fréquence et par des bandes de fréquences interdites associées aux modes de flexion des éléments. Les structures considérées sont constituées par la répétition périodique de portiques non contreventés. Contrairement aux milieux massifs, ces structures présentent une déformabilité beaucoup plus grande en cisaillement qu’en tractioncompressionet leur cinématique locale est très riche. Ainsi, il est possible de générer une grande variété de comportements en jouant sur les ordres de grandeur des propriétés des éléments et celui de la fréquence. Cette approche permet de construire différents modèles de milieux continus (ou poutres) généralisé(e)s. Ce travail apporte un cadre d’analyse pour l’étude de milieux tels que les mousses, les matières végétales, les os. . . mais aussi pour concevoir de nouveaux matériaux avec des propriétés atypiques. Ici, les modèles de poutres généralisées servent à comprendre le fonctionnement des bâtiments. Dans ce cas, la difficulté réside dans la prise en compte du cisaillement dans les murs voiles. / The dynamic behaviours of a class of reticulated structures - that is to say made up of interconnected beams - are studied with the homogenization method of periodic discrete media. It enables to derive, rigorously and in relation with the microstructure, an equivalent continuous medium at the macroscopic scale when the cell size is much smaller than the wavelength. The scope of application of the method is also extended to higher frequencies for which cell elements can be in resonance for bending. Consequently, at the macroscopic scale, the effective properties can depend on the frequency and there are frequency band gaps associated with the bending modes of the elements. Studied structures are made up of the periodic repetition of unbraced frames. Contrary to massive media, those structures have a shear deformability muchhigher than traction-compression deformability and their local kinematics is very rich. Thus, it is possible to generate a large diversity of behaviours by changing the orders of magnitude of the element properties and of the frequency. This approach enables to build several generalized continuous media (or beams). This work brings a framework for the study of media such as foams, vegetable tissue, bones... but also for the design of new materials with atypical properties. Here, generalized beam models are used to understand the behaviour of buildings. In that case, the difficulty consists in taking into account the shear mechanism in the shear walls.
2

Modélisation et simulation numérique de matériaux microstructurés pour l'isolation acoustique des cabines d'avion

Augier, Adeline 25 November 2010 (has links) (PDF)
Dans cette thèse, nous modélisons le passage d'une onde acoustique à travers un matériau poreux supposé périodique (mousse ou laine de verre). L'objectif est d'établir un système d'équations macroscopiques, prenant en compte la microstructure du domaine, sur un matériau homogène équivalent. Nous commençons par définir la modélisation du problème et nous obtenons un système non coercif écrit en fréquence afin de répondre aux problématiques industrielles. Nous établissons ensuite le caractère bien posé du système avant de le faire converger double échelle. Nous obtenons ainsi deux systèmes de cellule : un système de Stokes pour le fluide et un système de type élasticité linéaire pour décrire le déplacement du matériau. Au niveau macroscopique, nous obtenons un système couplé non intuitif. Nous finissons la partie théorique par une comparaison entre le modèle que nous avons obtenu et le modèle de Biot-Allard utilisé par les physiciens et industriels pour traiter ce type de problème. Enfin, nous illustrons le travail précédent grâce à des résultats numériques.
3

Application de l'approche X-FEM aux calculs parallèles et problèmes multi-échelles

Cloirec, Mathieu 30 September 2005 (has links) (PDF)
Bien que les moyens numériques actuels évoluent très rapidement, la résolution de problèmes mécaniques reste confrontée à de nombreuses difficultés (complexité des formes géométriques et des comportements, taille des structures de plus en plus grandes...). Pour contourner ces contraintes, de nombreuses méthodes ont été développées. Deux voies complémentaires peuvent être empruntées : les approches s'appuyant sur des études multi-échelles et le calcul intensif.<br />Les travaux présentés utilisent ces deux voies de manière conjointe et comprennent trois parties: l'étude de problèmes d'homogénéisation périodique traités avec X-FEM, le développement d'une approche multi-échelle tirant profit des avantages de X-FEM et enfin le développement de l'approche X-FEM pour le calcul parallèle.<br />En premier lieu, les travaux portent sur le domaine de l'homogénéisation périodique qui s'est développée lors de l'apparition des matériaux composites. Cette méthode propose de définir des caractéristiques mécaniques généralisées d'une structure comprenant deux matériaux, ou plus, ayant des propriétés distinctes. La structure se décompose en volumes répétitifs appelés V.E.R. (volume élémentaire représentatif). La résolution du problème microscopique sur le V.E.R. nous permet de définir les caractéristiques de la structure entière. La méthode des éléments finis étendue (X-FEM), permettant la présence de discontinuités au sein des éléments du maillage, associée à la technique des fonctions de niveau (Level Set), apportant une alternative à la représentation de formes géométriques complexes ou aléatoires, est employée à cet effet. <br />La deuxième partie présente une analyse multi-échelle d'une structure comprenant un détail. Pour traiter ce type de problèmes, il a souvent été d'usage d'employer des méthodes telles que l'approche globale-locale ou encore des techniques capables de raffiner le maillage autour du détail, mais celles-ci sont coûteuses et parfois peu efficaces. Nous proposons une approche à deux échelles: microscopique (à l'échelle du détail) et macroscopique (à l'échelle de la structure). L'objectif est d'apporter une correction au problème de la structure, ne tenant pas compte explicitement du détail, déduite d'une analyse locale de celui-ci. L'approche X-FEM couplée à la technique des fonctions de niveau est utilisée à cet escient. <br />Enfin, le dernier développement traite de résolutions de problèmes multi-domaines sur une machine parallèle. Mises à part les études précédemment exposées, la difficulté peut ne porter que sur la taille du domaine sur lequel se base le problème. Il s'agit, dans ce cadre, d'augmenter la capacité de calcul pour la résolution de problèmes impliquant une somme de données à traiter très importante. L'étude menée dans cette partie permet la gestion de l'enrichissement entraînée par l'approche X-FEM sur plusieurs domaines
4

Dynamique de milieux réticulés non contreventés : application aux bâtiments.

Chesnais, Céline 29 June 2010 (has links) (PDF)
Les comportements dynamiques d'une famille de structures réticulées, c'est-à-dire constituées d'un réseau de poutres, sont étudiés à l'aide de la méthode d'homogénéisation des milieux périodiques discrets. Cette dernière permet de construire, de façon rigoureuse et en lien avec la microstructure, un milieu continu équivalent à l'échelle macroscopique lorsque la taille de la cellule de base est très petite par rapport à la longueur d'onde. Le domaine d'application de cetteméthode est également étendu à des fréquences plus élevées pour lesquelles les éléments de la cellule peuvent entrer en résonance en flexion. Cela se traduit à l'échelle macroscopique par des propriétés apparentes qui dépendent de la fréquence et par des bandes de fréquences interdites associées aux modes de flexion des éléments. Les structures considérées sont constituées par la répétition périodique de portiques non contreventés. Contrairement aux milieux massifs, ces structures présentent une déformabilité beaucoup plus grande en cisaillement qu'en tractioncompressionet leur cinématique locale est très riche. Ainsi, il est possible de générer une grande variété de comportements en jouant sur les ordres de grandeur des propriétés des éléments et celui de la fréquence. Cette approche permet de construire différents modèles de milieux continus (ou poutres) généralisé(e)s. Ce travail apporte un cadre d'analyse pour l'étude de milieux tels que les mousses, les matières végétales, les os. . . mais aussi pour concevoir de nouveaux matériaux avec des propriétés atypiques. Ici, les modèles de poutres généralisées servent à comprendre le fonctionnement des bâtiments. Dans ce cas, la difficulté réside dans la prise en compte du cisaillement dans les murs voiles.
5

Adaptation élastoplastique et homogénéisation périodique

Magoariec, Hélène 03 December 2003 (has links) (PDF)
Ce travail est une contribution à l'analyse de la tenue mécanique de milieux hétérogènes soumis à des chargements variables et bornés. On propose une méthode numérique permettant d'étudier, par une approche directe essentiellement basée sur le théorème statique de Melan, l'adaptation de matériaux élastoplastiques parfaits à microstructure hétérogène, périodique et tridimensionnelle. L'objectif est de coupler la théorie de l'adaptation élastoplastique, permettant d'étudier le comportement de milieux soumis à des chargements variables, avec la théorie de l'homogénéisation périodique, permettant de prendre finement en compte l'influence du comportement microscopique de milieux hétérogènes sur leur comportement macroscopique. La méthode consiste à résoudre le problème d'adaptation sur une cellule de base 3D -considérée comme une microstructure représentative des hétérogénéités- et à exprimer les résultats, par l'intermédiaire de relations de moyenne, en termes de domaines admissibles de chargements extérieurs : les déformations et contraintes macroscopiques. Numériquement, ceci se traduit par le couplage entre un code éléments finis, permettant de prendre en compte l'aspect homogénéisation du problème en formulant rigoureusement les relations de périodicité et de moyenne, et un logiciel d'optimisation non linéaire sous contraintes, permettant d'expliciter le problème d'adaptation. La méthode est appliquée à des milieux 3D classiques ainsi qu'à des structures de type plaque mince périodique. Au terme de ce travail, on dispose d'un outil numérique général, en ce sens qu'il permet d'étudier comment éviter la rupture, par dissipation plastique illimitée, de milieux périodiquement hétérogènes, et ce, quelle que soit la cellule de base 3D considérée.
6

Modélisation du comportement thermomécanique des combustibles à particules par une approche multi-échelle

Blanc, Victor 11 December 2009 (has links) (PDF)
Les combustibles à particules sont constitués de quelques milliers de billes d'un millimètre de diamètre composées d'oxyde d'uranium enrobé de couches de confinement qui sont noyées dans une matrice graphite pour former un élément combustible. L'objectif de ce travail est de développer un outil de simulation du comportement thermomécanique de ces combustibles sous irradiation permettant une estimation fine des chargements locaux sur ces particules. Le choix s'est porté vers la méthode des éléments-finis au carré, où interviennent deux échelles distinctes de discrétisation : une structure '' macroscopique'' homogène dont les propriétés en chaque point d'intégration sont calculées sur une seconde structure ''microscopique'' hétérogène, le Volume Élémentaire Représentatif (VER). La première partie du travail a porté sur la définition de ce VER. Un indicateur morphologique basé sur la distribution des distances minimales centre-à-centres a été proposé pour sélectionner des tirages aléatoires de microstructure. La réponse macroscopique élastique des VER, calculée par éléments finis, a été comparée à un modèle analytique. Des indicateurs de représentativité thermique et mécanique du chargement local ont été construits à partir les modes de rupture de la particule. Une étude statistique de ces critères sur une centaine de VER a démontré l'importance de sélectionner une microstructure représentative. Il a dans cette optique été développé un modèle empirique reliant l'indicateur morphologique à l'indicateur mécanique. La seconde partie du travail traite de deux méthodes de changement d'échelle qui sont basées sur l'homogénéisation des milieux périodiques. Considérant un problème de thermique linéaire avec terme source en régime permanent, il a été montré que l'hétérogénité de la source de chaleur implique l'utilisation d'une méthode au second ordre pour relocaliser correctement le champ de température. Le problème mécanique non-linéaire a lui été traité en utilisant l'algorithme itératif de cast3M, en substituant à l'intégration de la loi de comportement un calcul élément finis sur le VER. Cet algorithme a été validé, puis couplé à la résolution thermique afin de simuler un chargement d'irradiation. Un calcul sur un élément combustible complet a mis en évidence une forte interaction entre les deux échelles, ce qui confirme l'intérêt d'un tel modèle pour simuler le comportement de ces combustibles.
7

Modélisation des transferts hydriques dans les milieux poreux partiellement saturés par homogénéisation périodique : Application aux matériaux cimentaires

Mchirgui, Walid, Mchirgui, Walid 10 May 2012 (has links) (PDF)
L'objectif de ce travail est d'obtenir, par homogénéisation périodique, des modèles macroscopiques de transfert hydrique dans les milieux poreux partiellement saturés à partir des équations de transfert de l'eau liquide et de vapeur d'eau écrites à une échelle microscopique. La dimensionnalisation des équations fait apparaître naturellement des nombres sans dimension caractérisant les problèmes de transfert hydriques dans les milieux partiellement saturés. Nous nous sommes intéressés à trois différents régimes de transfert (diffusion de vapeur prédominante, couplage diffusion/convection, convection de l'eau liquide prédominante). Pour chaque modèle homogénéisé, nous avons obtenu une expression différente du tenseur de diffusion hydrique homogénéisé. Nous avons ensuite calculé les tenseurs de diffusion hydrique homogénéisés obtenus dans les deux régions hygroscopique et super-hygroscopique, sur des géométries plus ou moins complexes décrivant la microstructure en 2D et 3D. Des comparaisons avec des valeurs expérimentales ont été ensuite effectuées. Pour finir, une résolution numérique de l'équation de transfert hydrique macroscopique homogénéisée a été effectuée en se basant sur les données expérimentales d'un béton BHP.
8

Homogénéisation et optimisation topologique de panneaux architecturés

Laszczyk, Laurent 24 November 2011 (has links) (PDF)
La conception sur-mesure de matériaux architecturés à l'échelle du milli/centimètre est une stratégie pour développer des matériaux de structure plus performants vis-à-vis de cahiers des charges multifonctionels. Ce travail de thèse s'intéresse en particulier à la conception optimale de panneaux architecturés périodiques, dans le but de combiner des exigences mécaniques de flexion et de cisaillement, ainsi que de conductivité thermique. Le comportement élastique peut être prédit grâce à l'identification sur la cellule périodique des coefficients de la matrice des souplesses équivalente. Ces calculs d'homogénéisation ont été mis en oeuvre par éléments finis pour estimer en particulier les souplesses en flexion et en cisaillement transverse. Après validation expérimentale, cette méthode de calcul constitue un outil d'évaluation des performances mécaniques pour chaque géométrie de cellule périodique (2D ou 3D). À titre d'exemple, et dans un contexte de développement de solutions matériaux architecturés pour l'automobile, la conception de tôles "texturées" est proposée en menant une étude paramétrique à l'aide de cet outil. L'implémentation d'un algorithme d'optimisation topologique couplé à la procédure d'homogénéisation permet d'enrichir les méthodes de conception sur-mesure en élargissant l'espace de recherche des "architectures". Après l'étude modèle du compromis entre flexion et cisaillement, le cas industriel d'un panneau sandwich isolant est traité. Dans ce cas, l'optimisation fournit plusieurs compromis prometteurs entre rigidité en cisaillement et isolation thermique. Ces géométries ont été réalisées et testées, et une nouvelle version améliorée du panneau sandwich a été sélectionnée.
9

Modèles et asymptotiques des interfaces fines et périodiques en électromagnétisme

Delourme, Bérangère 17 December 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la résolution des équations de Maxwell dans une structure périodique constituée d'un anneau mince de matériau diélectrique de rayon moyen r à l'intérieur duquel s'enroulent deux nappes de fils hélicoïdaux. L'épaisseur de l'anneau et la distance entre deux fils consécutifs sont du même ordre de grandeur d et nous supposons que d est bien inférieur à la longueur d'onde de l'onde incidente ainsi qu'au rayon moyen r. La présence des deux échelles rend les simulations numériques directes difficiles (il est alors nécessaire de mailler la structure à l'échelle du fil). C'est pourquoi nous construisons des modèles approchés dans lesquels l'anneau périodique est remplacé par une condition de transmission posée sur l'interface médiane S. La résolution du modèle approché par une méthode d'éléments finis est bien moins coûteuse que celle du problème exact car il n'y a plus besoin de mailler les fils. La construction des modèles approchés repose sur un développement asymptotique de la solution en fonction du petit paramètre d. Nous utilisons une méthode couplant les techniques d'homogénéisation et des développements asymptotiques raccordés. Les conditions de transmission approchées se construisent alors à l'aide du développement asymptotique tronqué. Nous accordons une attention particulière à la stabilisation des modèles approchés ainsi qu'à leur justification théorique. Enfin, nous validons nos modèles par des simulations numériques.
10

Homogénéisation périodique d’un matériau cellulaire en élasto-plasticité et application au calcul de structures : des petites aux grandes déformations / Periodic homogenisation of a cellular material in elastoplasticity and application to structural modelling : from small to large deformations

Iltchev, Alexandre 16 December 2014 (has links)
Grâce à leurs bonnes propriétés mécaniques spécifiques, les matériaux cellulaires architecturés présentent un fort intérêt pour répondre aux problématiques du secteur aéronautique. Cependant, la modélisation d'une structure macroscopique incluant un matériau cellulaire nécessite, soit de modéliser complètement l'architecture à l'échelle mésoscopique - ce qui est coûteux en temps de calcul - soit d'utiliser un Milieu Homogène Equivalent (MHE). Ainsi, cette thèse propose de caractériser un matériau cellulaire modèle constitué d'un empilement de tubes, selon un motif carré ou hexagonal, puis d'identifier un modèle phénoménologique rendant compte du comportement mécanique inélastique du matériau. Dans un premier temps, le matériau est caractérisé sous chargements multi-axiaux à l'aide de simulations éléments finis périodiques en petites déformations. Le comportement homogénéisé en petites déformations est ensuite utilisé pour l'identification d'une Loi Homogène Equivalente (LHE) compressible et anisotrope, qui permet la modélisation de structures sandwichs en remplaçant le coeur cellulaire par son MHE. Une comparaison est réalisée entre les réponses mécaniques des simulations de référence complètement maillées et celles utilisant l'approche par MHE, validant ainsi la pertinence de la méthode multi-échelle de modélisation proposée. La caractérisation en grandes déformations des deux types d'empilement est ensuite menée. D'abord, les effets de bords et les instabilités qui gouvernent le comportement macroscopique sont étudiés. Puis, après une étude du volume élémentaire représentatif des empilements, la caractérisation du comportement inélastique par la technique de l'homogénéisation périodique est réalisée. Le comportement adoucissant en compression de l'empilement hexagonal est ainsi étudié. Finalement, une extension des LHE identifiées en petites déformations est proposée pour rendre compte du comportement en compression du matériau observé en grandes déformations. / Cellular materials have excellent specific properties, which make them attractive for aeronautical applications. However, modelling macroscopic structures including a cellular material is either very costly in terms of computational time if the whole mesoscopic structure is considered or a Homogeneous Equivalent Medium (HEM) has to be used. This Ph.D. dissertation presents, the characterisation of a cellular material built from a stacking of tubes with a square or hexagonal based pattern and the identification of a phenomenological model of their inelastic mechanical behaviour. First, the material is characterised for multi-axial loadings through a periodic finite element model in small deformations for each tube stacking pattern. The macroscopic behaviour is then used to identify a compressible anisotropic Homogeneous Equivalent Law (HEL). Within the infinitesimal strain hypothesis, a comparison is carried out between reference full scale models and HEM based ones of sandwich structures with a cellular core, confirming the relevance of the proposed multi-scale method. Then, the mechanical behaviour of each tube stacking is characterised for large deformations in order to study the influence of the boundary size effects and the instabilities in the core on the macroscopic behaviour of sandwich structures. After a study on the representative volume element, the macroscopic inelastic behaviour is characterised through the periodic homogenisation technique, especially the softening observed in compression for the hexagonal pattern. Finally, an extension of the HELs identified in small deformations is proposed to model the behaviour observed in large deformations.

Page generated in 0.1281 seconds