Friction force oscillations caused by changing properties of the contact zone between brake disc and pad are well known from various applications. Resulting effects like brake judder are known phenomena in brake technologies and in the scope of various scientific work. A new measure to potentially reduce brake torque oscillations is the active compensation with the use of the control system of a self-energizing hydraulic brake (SEHB). New in comparison to traditional disc brakes is the fact that the brake torque is measured by the pressure in an additional supporting cylinder. Thus, the brake system is able to work in brake torque control mode. Within this paper a dynamic simulation model of the SEHB is shown and evaluated with measurement data achieved from a full scale test rig for railway applications. Based on the simulation model a pressure control strategy is developed to minimize brake torque oscillations of lower frequencies. The control parameters of the simulation are transferred to the experimental setup. Finally, simulation and experimental results are compared. Future work will deal with the development of control strategies to additionally minimize brake torque oscillations of the higher dynamics.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-199896 |
Date | 28 April 2016 |
Creators | Petry, Matthias, Reinertz, Olivier, Murrenhoff, Hubertus |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V.,, Technische Universität Dresden, Fakultät Maschinenwesen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject |
Format | application/pdf |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 1, pp. 535-546 |
Page generated in 0.0063 seconds