Return to search

Instabilités thermoconvectives pour des fluides complexes. / Thermal convective instability for complex fluids

La controverse concernant les mécanismes proposés pour l’intensification de la conductivité thermique et de la forte augmentation de la viscosité suggère que les expériences avec des nanofluides bien dispersés et correctement caractérisés seraient intéressantes. Par conséquent, nous nous sommes fixés comme objectif la caractérisation de la conductivité thermique et la viscosité de deux nanofluides “eau-oxyde de silice“ et “eau-titanium“. Il a été observé que la conductivité thermique des deux nanofluides considérés concorde bien avec la théorie du milieu effectif, à savoir, le modèle de Maxwell, et ne montre aucune amélioration par rapport aux effets associés aux mécanismes proposés de l’intensification du transfert du nanofluide tels que le mouvement brownien ou l’effet de stratification. Pour confirmer ce résultat, nous avons également mesuré la conductivité thermique du nanofluide eau contenant une suspension de nanotubes de carbone NTC. Nous constatons que la conductivité thermique de ce nanofluide NTC est également en bon accord avec le modèle de Maxwell. Les disparités et les incohérences publiées par les différents groupes sur les résultats et modèles de la conductivité thermique ainsi que la viscosité du nanofluide se trouvent être principalement dues à la qualité du nanofluide telles que la stabilité colloïdale, la taille des particules, la formation des agrégats, etc… Par ailleurs, l’influence des incertitudes en raison de l’adoption de différents modèles sur le transfert de chaleur par convection naturelle a été étudiée. Il a été observé que les incertitudes dans les modèles prédictifs peuvent conduire à des évaluations erronées du transfert convectif. / The controversy regarding the proposed mechanisms of the exceptionally enhanced thermal conductivity of nanofluids, as well as sharp increase of nanofluid viscosity suggest that systematic experiment with well dispersed and well characterized nanofluids are highly desired. Therefore, on the basis of this suggestion, thermal conductivity and viscosity of silica-water and titania-water nanofluids were measured. It was observed that the thermal conductivity of both nanofluids agrees well with the effective medium theory, i.e., Maxwell model, and does not show any enhancement due to effects associated with the proposed mechanisms of thermal energy transfer in nanofluids like Brownian motion or liquid layering. To support these results, the thermal conductivity of water based nanofluid containing carbon nanotubes was measured. It was found that that thermal conductivity of CNTs nanofluids agrees well with Maxwell model up to 1 vol.%. The inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are found to be mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e, aggregates size) within nanofluid. The influence of uncertainties due to adopting various formulas for the dynamic viscosity on natural convection heat transfer was investigated. It was observed that uncertainties in the predictive models for the effective thermal conductivity and dynamic viscosity of nanofluids, leads to erroneous evaluation of the convective heat transfer with nanofluids, and this acts as a brake on research in the area.

Identiferoai:union.ndltd.org:theses.fr/2015AIXM4778
Date16 December 2015
CreatorsHaddad, Zoubida
ContributorsAix-Marseille, Abid, Nora Chérifa
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds