• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 36
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of the Fin Configuration of Air-cooled Condensing Wet Electrostatic Precipitator for Water Recovery from Power Plant Flue Gas

Chen, Yanhui January 2013 (has links)
No description available.
2

A numerical study of the effect of a venetian blind on the convective heat transfer rate from a recessed window with transitional and turbulent flow

OGHBAIE, SHAGHAYEGH 22 September 2011 (has links)
The presence of a blind adjacent to a window affects the natural convective air flow over the window and natural convective heat transfer from the window to the room. Most numerical studies of convective heat transfer between a window-blind system and a room are based on the assumption that the flow remains laminar. However, in the case of larger windows it is to be expected that transition to turbulent flow will occur in the flow over the window. The aim of the present study was to numerically determine the effect of Venetian blind on laminar-to-turbulent transition in the flow over a simple recessed window and on the convective heat transfer from the window. An approximate model of a recessed window that is covered by a venetian blind has been considered. The fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. Radiant and conductive heat transfer effects have been neglected. However in the present study the case where there is a constant heat generation rate in the blind slats, as the result of solar radiation absorbed by the slats of the blind, has been considered. The k-epsilon turbulence model with the full effects of the buoyancy forces being accounted for has been used in obtaining the solution. The turbulent, steady and two dimensional governing equations have been solved using the commercial finite-volume based CFD code FLUENT. Results are generated for different blind slat angles, for different distances of the pivot point of the slats from the window and for different constant heat generation rates in the slats. The results show that over a wide range of Rayleigh number, the distance of the blind to the window has a stronger effect on the convective heat transfer from the window and also on the laminar to turbulent transition in the flow over the window than the blind slat angle. Heat generation in the slats increases the Mean Nusselt number and this effect increases as the Rayleigh number decreases. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2011-09-22 21:17:31.777
3

Determination of the convective heat transfer coefficients from the surfaces of buildings within urban street canyons

Smith, James O. January 2010 (has links)
In the summer of 2007, the number of people living in the world’s urban areas exceeded that of those living in the countryside. Such urbanisation tends to modify the climates of towns and cities as a result of a number of factors which together form the ‘urban heat island’ effect. In order to better design buildings and urban areas to cope with these effects, it is first necessary to understand the heat transfer mechanisms which are taking place. The aim of the current research has therefore been to provide convective heat transfer data appropriate for low-rise urban environments by investigating the effects of wind speed, direction and street geometry. The research has employed the naphthalene sublimation technique which has been extended in several fundamental areas including development of a novel approach to measure the rate of sublimation from wind tunnel models. This technique has permitted measurements to be made over an array of discrete locations, revealing the variation across building surfaces. The uncertainty in the convective heat transfer coefficients obtained was calculated to be approximately ±6%. Tests were conducted in the BRE wind tunnel with an atmospheric boundary layer simulation appropriate to inner city areas. Cube models were arranged so as to form long rows of flat-roofed buildings referred to as ‘street canyons’. A series of correlations have been derived from the experimental results from which the rate of convection occurring from each building surface may be obtained with respect to wind speed. The greatest rates of convective heat transfer have been shown to occur at the top of the windward wall and leading edge of the roof, the lowest rates from the leeward wall of a building. Convection was found to be reduced in narrow street canyons. In wider street canyons, the convective coefficients on the exposed windward and roof surfaces of buildings were higher, but the values on the leeward wall are lessened due to the distancing of the downstream windward vortex. The effect of wind direction was found to be relatively small and therefore it is proposed that the convective heat transfer relationships presented may be applied irrespective of wind direction.
4

Porovnání vlivu různých typů výustek na intenzitu přenosu tepla konvekcí z lidského těla / The influence of different types of ventilation outlets on the heat transfer by convection from the human body

Zábovský, Ján January 2020 (has links)
The aim of this diploma thesis is to investigate the influence of different types of HVAC system outlets on convective heat transfer from a human body. The first part of the thesis consists of an overview of essentials important for understanding the issue, specifically, metabolism, thermoregulation, heat transfer mechanisms, thermal vote and fluid dynamics. The second part defines the main working hypothesis and describes the used experimental approach leading either to confirmation or disproval of the hypothesis. The chosen approach is based on a measurement with thermal mannequin “Newton” using two different configurations: constant surface temperature and constant generated heat flux. In case of the first configuration, the convection intensity indicator was the value of heat flux generated from each of surface segments of the thermal mannequin. Their surface temperature was the indicator when running the experiment using the second configuration. The value was evaluated by the thermal mannequin as well as the thermal camera Flir i7 which provided more detailed division of the surface. The final part of the thesis describes the progress of the experiment itself, represents gathered values involving analysis of contaminants and confirms or disproves the original thesis.
5

Development of a Computer Program for Transient Heat Transfer Coefficient Studies

Samayamantula, Sri Prithvi Samrat 17 May 2019 (has links)
No description available.
6

Heat transfer enhancement in single-phase forced convection with blockages and in two-phase pool boiling with nano-structured surfaces

Ahn, Hee Seok 17 September 2007 (has links)
The first study researched turbulent forced convective heat (mass) transfer down- stream of blockages with round and elongated holes in a rectangular channel. The blockages and the channel had the same cross section, and a distance equal to twice the channel height separated consecutive blockages. Naphthalene sublimation experiments were conducted with four hole aspect ratios (hole-width-to-height ratios) and two hole-to-blockage area ratios (ratios of total hole cross-sectional area to blockage area). The effects of the hole aspect ratio, for each hole-to-blockage area ratio, on the local heat (mass) transfer distribution on the exposed primary channel wall between consecutive blockages were examined. Results showed that the blockages with holes enhanced the average heat (mass) transfer by up to 8.5 and 7.0 times that for fully developed turbulent flow through a smooth channel at the same mass flow rate, respectively, in the smaller and larger hole-to-blockage area ratio (or smaller and larger hole diameter) cases. The elongated holes caused a higher average heat (mass) transfer and a larger spanwise variation of the local heat (mass) transfer on the channel wall than did the round holes. The second study explored the heat transfer enhancement for pool boiling on nano-structured surfaces. Experiments were conducted with three horizontal silicon surfaces, two of which were coated with vertically aligned multi-walled carbon nanotubes (MWCNT) with heights of 9 and 25 ¹m, respectively, and diameters between 8 and 15 nm. The MWCNT arrays were synthesized on the two silicon wafers using chemical vapor deposition. Experimental results were obtained over the nucleate boiling and film boiling regimes under saturated and sub-cooled (5±C and 10±C) boiling conditions. PF-5060 was the test fluid. Results showed that the MWCNT array with a height of 25 ¹m enhanced the nucleate and film boiling heat fluxes on the silicon surface by up to 380% and 60%, respectively, under saturated boiling conditions, and by up to 300% and 80%, respectively, under 10±C sub-cooled boiling conditions, over corresponding heat fluxes on a smooth silicon surface. The MWCNT array with a height of 9 ¹m enhanced the nucleate boiling heat flux as much as the taller array, but did not significantly enhance the wall heat flux in the film boiling regime.
7

Estimation of thermal properties of randomly packed bed of silicagel particles using IHTP method

2013 December 1900 (has links)
Accurate values of thermophysical transport properties of particle beds are necessary to accurately model heat and mass transfer processes in particle beds that under-go preferred processes and changes. The objective of this study is to use a proven analytical/numerical methodology to estimate the unknown transport properties within test cells filled with silicagel particles and compare the results with the previously published data. An experimental test cell was designed and constructed to carry out transient heat transfer tests for both step change conduction and convection heat transfer within a packed bed of silicagel particles. For a known step change in the test cell temperature boundary condition, the temporal temperature distribution within the bed during heat conduction depends only on the effective heat conduction coefficient and the thermal capacity of the particle bed. The central problem is to, using only the boundary conditions and a few time-varying temperature sensors in the test cell of particles, determine the effective thermal conductivity of the test bed and specify the resulting measurement uncertainty. A similar problem occurs when the heat convection coefficient is sought after a step change in the airflow inlet temperature for the test cell. These types of problems are known as inverse heat transfer problems (IHTP). In this thesis, IHTP method was used to estimate the convective heat transfer coefficient. Good agreement was seen in experimental and numerical temperature profiles, which were modeled by using the estimated convective heat transfer coefficient. The same methodology was used to estimate the effective thermal conductivity of the particle bed. Comparison between the experimental temperature distribution and numerical temperature distribution, which was modeled by using the estimated effective conductivity, illustrated good agreement. On the other side, applying the effective thermal conductivity, obtained from a direct steady state measurement, in the numerical simulation could not present agreement between the numerical and experimental results. It was concluded that the IHTP methodology was a successful approach to find the thermophysical properties of the particle beds, which were hard to measure directly.
8

Transient reduced-order convective heat transfer modeling for a data center

Ghosh, Rajat 12 January 2015 (has links)
A measurement-based reduced-order heat transfer modeling framework is developed to optimize cooling costs of dynamic and virtualized data centers. The reduced-order model is based on a proper orthogonal decomposition-based model order reduction technique. For data center heat transfer modeling, the framework simulates air temperatures and CPU temperatures as a parametric response surface with different cooling infrastructure design variables as the input parameters. The parametric framework enables an efficient design optimization tool and is used to solve several important problems related to energy-efficient thermal design of data centers. The first of these problems is about determining optimal response time during emergencies such as power outages in data centers. To solve this problem, transient air temperatures are modeled with time as a parameter. This parametric prediction framework is useful as a near-real-time thermal prognostic tool. The second problem pertains to reducing temperature monitoring cost in data centers. To solve this problem, transient air temperatures are modeled with spatial location as the parameter. This parametric model improves spatial resolution of measured temperature data and thereby reduces sensor requisition for transient temperature monitoring in data centers. The third problem is related to determining optimal cooling set points in response to dynamically-evolving heat loads in a data center. To solve this problem, transient air temperatures are modeled with heat load and time as the parameters. This modeling framework is particularly suitable for life-cycle design of data center cooling infrastructure. The last problem is related to determining optimal cooling set points in response to dynamically-evolving computing workload in a virtualized data center. To solve this problem, transient CPU temperatures under a given computing load profile are modeled with cooling resource set-points as the parameters.
9

An Experimental Study of Heat Transfer Deterioration at Supercritical Pressures

Kline, Nathan January 2017 (has links)
Convective heat transfer to CO2 flowing upward in electrically heated vertical tubes at supercritical pressures was studied for wall heat fluxes q within ranges that included values corresponding to the onset of heat transfer deterioration (HTD). The inlet pressure was P = 8.35 MPa, the mass flux was in the range 200 kg/m2s ≤ G ≤ 1500 kg/m2s, and the inlet temperature was in the range 0 ◦C ≤ Tin ≤ 35 ◦C. Wall temperature measurements were collected in three tubular test sections, having inner diameters of D = 4.6, 8, and 22 mm. The abilities of three different HTD identification methods to separate the entire data set into deteriorated and normal heat transfer modes were tested. Two types of buoyancy parameters were tested as HTD detection methods, and correction factors for changes in mass flux were devised. The minimum heat flux at HTD onset was found to follow a power law of mass flux with the same exponent for all three sections and the same proportionality coefficient for the two smaller sections but a smaller one for the larger test section. For heat flux values that were larger than this minimum, HTD was found to occur only within a limited range of Tin, whose width increased with increasing heat flux. The heat transfer coefficient for normal heat transfer was expressed as an exponential function of the diameter.
10

The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes

Grote, Kersten 10 June 2013 (has links)
There are in general two different types of studies concerning nanofluids. The first one concerns itself with the study of the effective thermal conductivity and the other with the study of convective heat transfer enhancement. The study on convective heat transfer enhancement generally incorporates the study on the thermal conductivity. Not many papers have been written on the convective heat transfer enhancement and even fewer concerning the study on multi-walled carbon nanotubes in the transitional flow regime. In this paper the thermal conductivity and viscosity was determined experimentally in order to study the convective heat transfer enhancement of the nanofluids. Multi-walled carbon nanotubes suspended in distilled water flowing through a straight, horizontal tube was investigated experimentally for a Reynolds number range of a 1 000 - 8 000, which included the transitional flow regime. The tube was made out of copper and has an internal diameter of 5.16 mm. Results on the thermal conductivity and viscosity indicated that they increase with nanoparticle concentration. Convective heat transfer experiments were conducted at a constant heat flux of 13 kW/m2 with 0.33%, 0.75% and 1.0% volume concentrations of multi-walled carbon nanotubes. The nanotubes had an outside diameter of 10 - 20 nm, an inside diameter of 3 - 5 nm and a length of 10 - 30 μm. Temperature and pressure drop measurements were taken from which the heat transfer coefficients and friction factors were determined as a function of Reynolds number. The thermal conductivities and viscosities of the nanofluids were also determined experimentally so that the Reynolds and Nusselt numbers could be determined accurately. It was found that heat transfer was enhanced when comparing the data on a Nusselt number as a function of Reynolds number graph but comparing the results on a heat transfer coefficient as a function of average velocity graph the opposite effect was observed. Performance evaluation of the nanofluids showed that the increase in viscosity was four times the increase in the thermal conductivity which resulted in an inefficient nanofluid. However, a study on the performance evaluation criterion showed that operating nanofluids in the transition and turbulent flow regime due to the energy budget being better than that of the distilled water. / Dissertation (MEng)--University of Pretoria, 2012. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.1101 seconds