Return to search

On Weak Limits and Unimodular Measures

In this thesis, the main objects of study are probability measures on the isomorphism classes of countable, connected rooted graphs. An important class of such measures is formed by unimodular measures, which satisfy a certain equation, sometimes referred to as the intrinsic mass transport principle. The so-called law of a finite graph is an example of a unimodular measure. We say that a measure is sustained by a countable graph if the set of rooted connected components of the graph has full measure. We demonstrate several new results involving sustained unimodular measures, and provide thorough arguments for known ones. In particular, we give a criterion for unimodularity on connected graphs, deduce that connected graphs sustain at most one unimodular measure, and prove that unimodular measures sustained by disconnected graphs are convex combinations. Furthermore, we discuss weak limits of laws of finite graphs, and construct counterexamples to seemingly reasonable conjectures.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/30417
Date14 January 2014
CreatorsArtemenko, Igor
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0087 seconds