A proposta deste trabalho foi analisar diferentes metodologias de treinamento de uma rede neural convolucional profunda (CNN) para a detecção de distorção arquitetural mamária (DA) em imagens de mamografia digital. A DA é uma contração sutil do tecido mamário que pode representar o sinal mais precoce de um câncer de mama em formação. Os sistemas computacionais de auxílio ao diagnóstico (CAD) existentes ainda apresentam desempenho insatisfatório para a detecção da DA. Sistemas baseados em CNN têm atraído a atenção da comunidade científica, inclusive na área médica para a otimização dos sistemas CAD. No entanto, as CNNs necessitam de um grande volume de dados para serem treinadas adequadamente, o que é particularmente difícil na área médica. Dessa forma, foi realizada neste trabalho, uma comparação de diferentes abordagens de treinamento para uma arquitetura CNN avaliando-se o efeito de técnicas de geração de novas amostras (data augmentation) sobre o desempenho da rede. Para isso, foram utilizadas 240 mamografias digitais clínicas. Uma das redes (CNN-SW) foi treinada com recortes extraídos por varredura em janela sobre a área interna da mama (aprox. 21600 em média) e a outra rede (CNN-SW+) contou com o mesmo conjunto ampliado por data augmentation (aprox. 345000 em média). Para avaliar o método, foi utilizada validação cruzada por k-fold, gerando-se em rodízio, 10 modelos de cada rede. Os testes analisaram todas as ROIs extraídas da mama, sendo testados 14 mamogramas por fold, e obtendo-se uma diferença estatisticamente significativa entre os resultados (AUC de 0,81 para a CNN-SW e 0,83 para a CNN-SW+). Mapas de calor ilustraram as predições da rede, permitindo uma análise visual e quantitativa do comportamento de ambos os modelos. / The purpose of this work was to analyze different training methodologies of a deep convolutional neural network (CNN) to detect breast architectural distortion (AD) in digital mammography images. AD is a subtle contraction of the breast tissue that may represent the earliest sign of a breast cancer in formation. Current Computer-Aided Detection (CAD) systems still have an unsatisfactory performance on AD detection. CNN-based systems have attracted the attention of the scientific community, including in the medical field for CAD optimization. However, CNNs require a large amount of data to be properly trained, which is particularly difficult in the medical field. Thus, in this work, different training approaches for a CNN architecture are compared evaluating the effect of data augmentation techniques on the data set. For this, 240 clinical digital mammography were used. One of the networks (CNN-SW) was trained with regions of interest (ROI) extracted by a sliding window over the inner breast area (approx 21600 on average) and the other network (CNN-SW+) had the same set enlarged by data augmentation (about 345000 on average). To evaluate the method, k-fold cross-validation was used, generating 10 instances of each model. The tests looked at all the ROIs extracted from the breast (14 mammograms per fold), and results showed a statistically significant difference between both networks (AUC of 0.81 for CNN-SW and 0.83 for CNN-SW+). Heat maps illustrated the predictions of the networks, allowing a visual and quantitative analysis of the behavior of both models.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25042019-110326 |
Date | 08 March 2019 |
Creators | Costa, Arthur Chaves |
Contributors | Vieira, Marcelo Andrade da Costa |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds