Les fonctions de treillis, apparaissent être des outils essentiels en recherche opérationnelle. Elles ouvrent en effet de nouveaux champs d'application en théorie des jeux coopératifs, et en aide à la décision (les jeux sont dans ce cas des capacités, ou mesures floues). Cette thèse a pour objet l'investigation de concepts de solutions pour les jeux définis sur des structures générales de coalitions. À cette fin, nous proposons plusieurs généralisations et axiomatisations de la valeur de Shapley pour les jeux multi-choix, les jeux à actions combinées, et les jeux réguliers. L'indice d'interaction quantifie la véritable contribution d'une coalition par rapport à toutes ses sous-coalitions. Mathématiquement, il s'agit d'un prolongement de la valeur de Shapley. Nous proposons des axiomatisations de l'indice d'interaction de Shapley pour les jeux bi-coopératifs, ainsi que des procédés calculatoires permettant de déterminer l'opérateur d'interaction et son inverse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00274302 |
Date | 14 December 2007 |
Creators | Lange, Fabien |
Publisher | Université Panthéon-Sorbonne - Paris I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds