Return to search

Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity

Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-09-05T22:06:25Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Fábio Gomes Ribeiro.pdf: 10740890 bytes, checksum: d8441636ef0750349f292a0d79c31be3 (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-09-14T21:43:43Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Fábio Gomes Ribeiro.pdf: 10740890 bytes, checksum: d8441636ef0750349f292a0d79c31be3 (MD5) / Made available in DSpace on 2018-09-14T21:43:43Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Fábio Gomes Ribeiro.pdf: 10740890 bytes, checksum: d8441636ef0750349f292a0d79c31be3 (MD5)
Previous issue date: 2015-08-28 / CNPq / In view of quite recent experimental activities on magnetic and superconducting properties of honeycomb and hexagonal lattice based materials, in this thesis we have used field-theoretic and many-body methods to investigate magnetic and superconducting properties of the large-U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain the Lagrangian density associated with the charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom. The Hamiltonian related to the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative low-energy theory suitable to describe the (quantum) magnetic and superconducting phases at half-filling and in the hole-doped regime. At half-filling, we deal with the underlying spin degrees of freedom of the quantum antiferromagnetic (AF) Heisenberg model by employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum, we derive a nonlinear σ-model with a topological Hopf term that describes the AF-VBS (valence bond solid) competition. In the challenging hole-doped regime, our approach allows the derivation of a t-J Hamiltonian, and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and, particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against recent Grassmann tensor product state simulations. In addition, we have performed an extensive study of the electronic structure of the doped system for each competing phase: AF, ferromagnetic (FM), and (spin-singlet pairing) s-, dx₂₋ʏ₂ – and idxʏ -wave superconducting (SC) state induced by purely electronic effects. In this context, an energetic analysis of the ground state of these phases reveal that the AF order prevails for low hole doping, while a dominantly chiral dx₂₋ʏ₂ + idxʏ superconducting state was found in the vicinity of the Van Hove singularity (high hole doping). We also stress that a thermodynamic analysis of the superconducting phase shows that the critical temperature is directly related to the exchange constant J = 4t²/U, in which t denotes the hopping amplitude and U the on-site Coulomb repulsion of the Hubbard model (purely electronic origin). Remarkably, the competition between the AF and dx₂₋ʏ₂ + idxʏ SC phases takes place by the occurrence of a first-order transition accompanied by a spatial phase separation of the referred phases. / Diante dos recentes resultados experimentais sobre propriedades magnéticas e supercontudoras de materias compostos com estruturas cristalinas “rede colmeia" (honeycomb) e hexagonal, nesta tese utilizamos métodos da teoria de campos e da teoria quântica de muitos corpos para investigar as propriedades magnéticas e supercondutoras do modelo de Hubbard no limite de acoplamento forte na rede honeycomb, incluindo os regimes de banda semicheia e dopada (buracos). No âmbito do formalismo de integração funcional, obtivemos uma densidade de lagrangiana associada aos graus de liberdade de carga (campos de Grassmann) e de spin [campos de calibre SU(2)]. O hamiltoniano relacionado aos graus de liberdade de carga é exatamente diagonalizado. No regime de acoplamento forte, derivamos uma teoria perturbativa de baixa energia adequada para descrever as fases (quânticas) magnéticas e supercondutoras nos regimes de banda semi-cheia e dopada por buracos. No regime de banda semi-cheia investigamos os efeitos das flutuações quânticas de spin na fase antiferromagnética (AF) no contexto do modelo de Heisenberg, utilizando uma teoria perturbativa de ondas de spin até O (1/S²), onde S é a magnitude do spin. Com efeito, calculamos a energia do estado fundamental e a magnetização por sítio, cujos resultados estão em boa concordância com estudos anteriores. Além disso, analisamos a competição AF-VBS (estado cristalino de ligação de valência) por meio do modelo σ não-linear com a presença do termo topológico de Hopf. No desafiante regime dopado por buracos, nossa abordagem possibilitou a derivação de um hamiltoniano t-J e a análise do papel desempenhado pelas flutuações quânticas de carga e de spin na energia do estado fundamental da fase AF e, principalmente, no colapso da fase AF para uma dopagem crítica; os resultados são aferidos com recentes simulações de Grassmann tensor product state. Em adição, realizamos um estudo extensivo das estruturas eletrônicas do sistema dopado para cada fase competidora, na ausência de flutuações quânticas de spin: AF, ferromagnética (FM) e supercondutora (SC) induzida por efeitos puramente eletrônicos com simetria (pareamento tipo singleto) s, dx₂₋ʏ₂ ou dxʏ. Neste contexto, uma análise energética do estado fundamental dessas fases revela que a fase AF prevalece no regime de baixa dopagem, enquanto que o estado supercondutor com simetria quiral dx₂₋ʏ₂ + idxʏ predomina nas proximidades da singularidade de Van Hove (regime de alta dopagem). Destacamos ainda que uma análise termodinâmica da fase supercondutora demonstra que a temperatura crítica está diretamente relacionada à constante de troca J = 4t²/U, onde t é a amplitude de hopping e U é a repulsão coulombiana intra-sítio do modelo de Hubbard (origem puramente eletrônica). Finalmente, ressaltamos que a competição entre as fases AF - dx₂₋ʏ₂ + idxʏ SC se manifesta pela ocorrência de uma transição de primeira ordem acompanhada da separação espacial das referidas fases.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/26571
Date28 August 2015
CreatorsRIBEIRO, Fábio Gomes
Contributorshttp://lattes.cnpq.br/4862700714316793, COUTINHO FILHO, Maurício Domingues
PublisherUniversidade Federal de Pernambuco, Programa de Pos Graduacao em Fisica, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds