Les réseaux neuronaux, pendant leur période de développement, génèrent des patrons d’activité immatures qui sont supposés participer à la formation des circuits neuronaux. Ces activités synchronisées créent des conditions favorables pour la plasticité hebbienne qui soutient la formation des circuits locaux. Les travaux menés notamment sur les systèmes sensoriels ont montré que les circuits pauci-neuronaux locaux sont capables de présenter une activité synchrone tout en étant isolés du reste des structures cérébrales. La moelle épinière isolée produit des bursts qui sont à l’origine des secousses musculaires, la rétine insensible à la lumière génère des ondes d’activité, d’autres régions cérébrales génèrent des activités synchrones avant de remplir la fonction à laquelle ils sont destinés. De manière similaire, l’hippocampe du rat nouveau-né ou primate prématuré in vitro, ainsi que les néocortex immature in vitro, génèrent une activité neuronale synchronisée, appelée giant depolarising potentials (GDPs). En se basant uniquement sur ces études et en prenant en compte la maturation tardive de certaines projections neuronales à distance, il serait tentant de conclure que le cerveau immature fonctionne comme un ensemble de petits modules fonctionnels qui auto-entretiennent leur activité intrinsèque avant de se connecter entre eux pour créer un cerveau fonctionnel adulte. Cependant, certaines connexions à longue distance sont formées très tôt pendant le développement et permettent la propagation des oscillations immatures entre les structures connectées. En effet, les ondes rétinales se propagent au noyau géniculé latéral et ensuite jusqu’au cortex visuel ; les GDPs hippocampiques se propagent à l’hippocampe controlatéral, septum et cortex entorhinal et finalement, les secousses musculaires, en créant un feed-back sensoriel, déclenchent des oscillations gamma immatures ainsi que les spindle bursts dans le réseau thalamo-cortical. Un fonctionnement similaire est décrit chez le nouveau-né prématuré. Il paraît donc plus probable, que le cerveau soit, dès les stades précoces du développement, organisé en sous-systèmes fonctionnels reliés entre eux anatomiquement et fonctionnellement. Au sein des unités fonctionnelles sont générés des patrons d’activité immatures synchrones afin de créer des connexions organisées topographiquement qui serviront de base anatomique de la fonction finale. Si ces étapes développementales sont perturbées pendant les périodes critiques, le système ne pourra pas assurer sa fonction de manière adéquate au stade mature. L’hippocampe mature, ou plus exactement les circuits cortico-hippocampiques, jouant un rôle primordial dans la mémoire déclarative, l’orientation spatiale et l’inhibition du comportement. L’établissement de ces fonctions est progressif au cours du développement. Par exemple les adultes humains n’ont que rarement des souvenirs personnels datant avant l’âge de trois ans. Or, nous savons aujourd'hui que le bébé humain est capable de garder des souvenirs dans la mémoire déclarative (dépendante de l’hippocampe) au cours de la première année de vie avec une efficacité croissante, mais il ne se rappellera pas ces souvenirs à l’âge adulte (Bauer, 2006). Nous ne savons pas s’il s’agit d’un encodage différent d’emblée ou d’un processus secondaire supprimant l’accès à ces souvenirs précoces. Nous pouvons présumer qu’il existe des modifications des activités électrophysiologiques pendant le développement qui soutiennent la modification de ces fonctions. Au cours de ce travail de thèse, nous voulions savoir comment et à partir de quand l’hippocampe, qui reçoit des informations convergentes de nombreuses régions néocorticales, acquiert son mode de fonctionnement adulte. Afin de répondre à cette question nous avons étudié le système cortex entorhinal – hippocampe, le cortex entorhinal étant la principale entrée excitatrice de l’hippocampe et recevant des afférences de nombreuses régions du néocortex. (...) / Neuronal networks spontaneously generate “immature” patterns of activity during development, which are thought to participate on the formation of neural circuits. Local neocortical as well as hippocampal circuits generate synchronised neuronal discharges providing support for Hebbian plasticity. Studies of sensory systems showed that local pauci-neuronal circuits were able to generate synchronous activity while isolated from other brain structures. Isolated spinal cord produces bursts evoking muscle twitching, light insensitive retina generates waves of activity, as well as other brain regions generate synchronous activities before fulfilling the function for which they are intended. Similarly, the hippocampus of newborn rat or premature primate in vitro, as well as immature neocortex in vitro, generates synchronised neuronal activity called giant depolarising potentials (GDPs). Based solely on these studies and taking into account the delayed maturation of certain long-distance neuronal projections, it would be tempting to conclude that the immature brain functions as a set of small functional modules that self-maintain their intrinsic activity before connecting together to create a functional adult brain. However, some long-distance connections are formed very early during development and allow the propagation of oscillations between immature connected structures. Indeed, retinal waves propagate to the lateral geniculate nucleus and then to the visual cortex, hippocampal GDPs propagate to the contralateral hippocampus, septum and entorhinal cortex, and finally, twitching, creating a sensory feedback, triggers immature gamma oscillations and spindle bursts in the thalamo-cortical network. A similar functioning is described in the premature newborn. It therefore seems more likely that the brain is, during the early stages of development, organised into functional subsystems interconnected anatomically and functionally. Within functional units are generated immature patterns of synchronous activity to create topographically organised connections that serve as anatomical basis of the final function. If these developmental stages are disturbed during critical periods, the system cannot perform its function adequately in mature stage. The mature hippocampus, or more precisely the cortico-hippocampal circuits, plays a key role in declarative memory, spatial organisation and behavioural inhibition. The establishment of these functions is progressive during development. For example, human adults rarely have personal memories dating before the age of three years. However, we now know that the human baby is able to keep memories in declarative memory (hippocampus-dependent) during the first year of life with increasing efficiency, but will not remember them in the adulthood. We do not know if the encoding of the memories is different or a secondary process inhibits the access to the early memories. We can assume that changes in electrophysiological activity during development support modification of these functions. In this thesis, we wanted to know how and from when the hippocampus, which receives convergent information from many cortical areas, acquires his adult mode of functioning. To answer this question we studied the entorhinal cortex-hippocampus system, entorhinal cortex being the main excitatory input to the hippocampus and receiving afferents from many parts of the neocortex. We were able to distinguish several periods in the development of the immature hippocampus: Period from P1 till P12 characterised by the sole presence of immature sharp waves triggered by the entorhinal cortex. Period from P13, when two types of sharp waves coexisted: the immature sharp waves and sharp waves as described in the adult animals newly emerged. The mature sharp waves, unlike the immature, can be accompanied by ripples. (...)
Identifer | oai:union.ndltd.org:theses.fr/2013PA05T050 |
Date | 25 November 2013 |
Creators | Janác̆ková, Son̆a |
Contributors | Paris 5, Khazipov, Rustem, Nabbout, Rima |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds