Return to search

Classification of Transcribed Voice Recordings : Determining the Claim Type of Recordings Submitted by Swedish Insurance Clients / Klassificering av Transkriberade Röstinspelningar

In this thesis, we investigate the problem of building a text classifier for transcribed voice recordings submitted by insurance clients. We compare different models in the context of two tasks. The first is a binary classification problem, where the models are tasked with determining if a transcript belongs to a particular type or not. The second is a multiclass problem, where the models have to choose between several types when labelling transcripts, resulting in a data set with a highly imbalanced class distribution. We evaluate four different models: pretrained BERT and three LSTMs with different word embeddings. The used word embeddings are ELMo, word2vec and a baseline model with randomly initialized embedding layer. In the binary task, we are more concerned with false positives than false negatives. Thus, we also use weighted cross entropy loss to achieve high precision for the positive class, while sacrificing recall. In the multiclass task, we use focal loss and weighted cross entropy loss to reduce bias toward majority classes. We find that BERT outperforms the other models and the baseline model is worst across both tasks. The difference in performance is greatest in the multiclass task on classes with fewer samples. This demonstrates the benefit of using large language models in data constrained scenarios. In the binary task, we find that weighted cross entropy loss provides a simple, yet effective, framework for conditioning the model to favor certain types of errors. In the multiclass task, both focal loss and weighted cross entropy loss are shown to reduce bias toward majority classes. However, we also find that BERT fine tuned with regular cross entropy loss does not show bias toward majority classes, having high recall across all classes. / I examensarbetet undersöks klassificering av transkriberade röstinspelningar från försäkringskunder. Flera modeller jämförs på två uppgifter. Den första är binär klassificering, där modellerna ska särskilja på inspelningar som tillhör en specifik klass av ärende från resterande inspelningar. I det andra inkluderas flera olika klasser som modellerna ska välja mellan när inspelningar klassificeras, vilket leder till en ojämn klassfördelning. Fyra modeller jämförs: förtränad BERT och tre LSTM-nätverk med olika varianter av förtränade inbäddningar. De inbäddningar som används är ELMo, word2vec och en basmodell som har inbäddningar som inte förtränats. I det binära klassificeringsproblemet ligger fokus på att minimera antalet falskt positiva klassificeringar, därför används viktad korsentropi. Utöver detta används även fokal förlustfunktion när flera klasser inkluderas, för att minska partiskhet mot majoritetsklasser. Resultaten indikerar att BERT är en starkare modell än de andra modellerna i båda uppgifterna. Skillnaden mellan modellerna är tydligast när flera klasser används, speciellt på de klasser som är underrepresenterade. Detta visar på fördelen av att använda stora, förtränade, modeller när mängden data är begränsad. I det binära klassificeringsproblemet ser vi även att en viktad förlustfunktion ger ett enkelt men effektivt sätt att reglera vilken typ av fel modellen ska vara partisk mot. När flera klasser inkluderas ser vi att viktad korsentropi, samt fokal förlustfunktion, kan bidra till att minska partiskhet mot överrepresenterade klasser. Detta var dock inte fallet för BERT, som visade bra resultat på minoritetsklasser även utan att modifiera förlustfunktionen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-305825
Date January 2021
CreatorsPiehl, Carl
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:777

Page generated in 0.0026 seconds