Ce travail de recherche porte sur la réalisation de dispositifs électroniques spécifiques et originaux (Transistors à effet de champ à microcanaux) dédiés à la détection des espèces chimiques et biochimiques en milieu liquide. Ce dispositif s'appuie sur la technologie des transistors à grille suspendue (SGFET) déjà réalisés à l'IETR, en y apportant une amélioration majeure qui consiste en l'intégration au sein de la structure d'un canal microfluidique. Cette structure, nommée transistor à canal microfluidique intégré, doit permettre de conserver la forte sensibilité de détection du SGFET mais aussi de garantir le passage du liquide testé sous la grille. Cette architecture permet aussi d'augmenter sa robustesse et sa fiabilité tout en ne nécessitant que de très petits volumes de solutions. Des microcanaux avec un bon maintien mécanique ont été réalisés par micro-usinage de surface en utilisant différents matériaux comme couche sacrificielle. Ces canaux ont été intégré dans un FET et leurs accès microfluidiques ont été assurés en réalisant des ouvertures (inlet/outlet) par la face avant. Les tests électriques ont montré un bon fonctionnement de ces capteurs avec une grande sensibilité de mesure du pH mais le passage du liquide est alors majoritairement dû aux phénomènes de capillarité. Une amélioration sur l'architecture de la structure a été faite, en réalisant des ouvertures par la face arrière. Un bon fonctionnement avec une grande sensibilité de mesure de pH ont été présentés. Finalement, une structure hybride contenant une ouverture sur la face avant et une autre sur la face arrière, a été élaborée et les tests d'injection de la solution ont été un succès. / This work presents the achievement of specific and original electronic devices (Field effect transistor with microfluidic channel), dedicated to the detection of chemical and biochemical species in liquid. This device relies on the technologies of suspended gate transistor, developed in IETR, with a major improvement in the structure by adjunction of a microfluidic channel integrated in the structure. This structure named transistor with integrated microfluidic channel must enable to guarantee the flow of liquid under the gate, while keeping the high sensitivity of the SGFET. This architecture also allows increasing its robustness and reliability while requiring only a very small amount of chemicals solutions. Microchannels with good mechanical properties were fabricated by surface micromachining using different materials as a sacrificial layer. These channels have been integrated into a FET and microfluidic accesses (inlet / outlet) were provided by making openings via the front face. Electrical tests showed good functioning of these sensors with high sensitivity of pH measurement. However in this case, liquid flow is mainly achieved by capillarity. An improvement on the architecture of the structure was made with opening on the rear face. A good behaviour with high sensitivity of pH measurement was presented. Finally, a hybrid structure containing one opening access in the front face and one on the rear face was elaborated and the injection of the solution was successful.
Identifer | oai:union.ndltd.org:theses.fr/2014REN1S131 |
Date | 10 July 2014 |
Creators | Bouhadda, Ismaïl |
Contributors | Rennes 1, Le Bihan, France, Sagazan, Olivier de |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds