Return to search

Surface modifications of fluoropolymer films by atmospheric pressure nitrogen plasma : the effect on their surface properties

Thèse ou mémoire avec insertion d'articles / Les fluoropolymères sont une classe de polymères connus pour leurs propriétés exceptionnelles, les distinguant ainsi des autres matériaux. Leurs caractéristiques uniques incluent une stabilité thermique, une faible constante diélectrique, un faible coefficient de frottement, une inertie chimique et une faible énergie de surface. En raison de ces attributs, les fluoropolymères sont amplement utilisés dans diverses industries, par exemple en tant que matériaux barrières ou encore dans les matériaux composites et multicouches. Bien que leur inertie chimique soit bénéfique à de nombreuses fins, elle peut gêner l'adhésion à des cibles spécifiques comme les adhésifs ou d'autres matériaux. Par conséquent, des techniques de modification de surface sont souvent utilisées pour améliorer leurs propriétés d'adhésion tout en conservant leurs propriétés de volume souhaitées. Actuellement, des modifications de surface des polymères fluorés peuvent être obtenues grâce à des traitements chimiques humides et des traitements au plasma. Les traitements chimiques humides impliquent des produits résiduels nocifs et une perte potentielle des propriétés optiques et mécaniques du polymère. En revanche, les traitements au plasma offrent une approche sèche avec moins de sous-produits chimiques. Les traitements plasmas à basse pression ont été largement étudiés depuis les années 1950, rapportant des changements morphologiques et chimiques sur la surface du polymère, conduisant à des propriétés d'adhésion améliorées. Cependant, les limites de l'approche basse pression incluent des substrats de petite taille, des pompes à vide spécialisées et une approche de traitement par lots, qui réduit les taux de production. Par conséquent, l'utilisation de systèmes de plasma à pression atmosphérique suscite un intérêt croissant pour remédier à ces limitations. Ceci est généralement réalisé en employant des plasmas de gaz non réactifs tels que l'hélium ou l'argon. Cependant, ces gaz sont relativement coûteux par rapport aux gaz réactifs courants (par exemple l'air, l'azote), et peuvent avoir un impact significatif sur le coût global des procédés. De plus, l'utilisation d'approches via plasma pour traiter différents fluoropolymères peut s'avérer complexe. Les processus et conditions expérimentales peuvent ne pas fonctionner pour des polymères de natures différentes (par exemple le degré de fluoration, la cristallinité, ou encore le poids moléculaire). En conséquence, ce travail de thèse de doctorat propose d'étudier la modification de films de fluoropolymères en utilisant un traitement au plasma d'azote à pression atmosphérique. Le traitement induit une modification de surface stable avec des caractéristiques morphologiques et physico-chimiques améliorant les propriétés d'adhésion. Plus précisément, le traitement améliore l'adhésion à différents degrés, allant des films aux adhésifs silicones, caoutchoucs et acryliques. Ces informations peuvent être utilisées pour sélectionner l'adhésif approprié pour une application particulière et pour évaluer les modifications de surface grâce à des tests de pelage. De plus, il a été démontré que le traitement au plasma crée une surface qui résiste au lavage avec divers solvants. De plus, les résultats indiquent que l'énergie de surface n'est pas un paramètre précis pour évaluer l'adhésion des fluoropolymères traités au plasma. En effet, l'évolution de l'adhésion est plutôt liée à une signature chimique qui dépendrait du ratio de groupes fonctionnels spécifiques dans la surface du polymère fluoré. Enfin, l'adhésion obtenue à partir de surfaces traitées a été comparée à celle de polymères fluorés chimiquement attaqués, soulignant qu'il est possible d'obtenir une adhésion plus élevée grâce au traitement proposé ici. Dans l'ensemble, ce travail de doctorat a mis en évidence le potentiel d'utiliser un plasma à pression atmosphérique, généré dans l'azote, afin de fournir une solution alternative. Notamment, en ayant un impact environnemental moindre que celui de la gravure chimique humide, avec l'avantage d'utiliser un plasma à pression atmosphérique et de l'azote comme gaz de travail. / Fluoropolymers are a class of polymers known for their exceptional properties, making them stand out among other materials. These unique characteristics include thermal stability, low dielectric constant, low friction coefficient, chemical inertness, and low surface energy. Due to these attributes, fluoropolymers find widespread use in various industries, serving as barrier materials, composites, and multilayer materials. Although their chemical inertness is beneficial for many purposes, it can hinder adhesion to specific targets like adhesives or other materials. Therefore, surface modification techniques are often employed to enhance their adhesion properties while maintaining their desirable bulk properties. Currently, surface modifications of fluoropolymers can be achieved through wet-chemical treatments and plasma treatments. Wet-chemical treatments involve harmful residual products and potential loss of optical and mechanical properties of the polymer. On the other hand, plasma treatments offer a dry approach with fewer chemical by-products. Low-pressure plasma treatments have been studied extensively since the 1950s, reporting morphological and chemical changes on the polymer surface, leading to improved adhesion properties. However, low-pressure plasma approach limitations include small substrate sizes, specialized vacuum pumps, and a batch processing approach, which reduces production rates. Consequently, there has been a growing interest in using atmospheric pressure plasma systems to address these limitations. This is usually achieved by employing plasmas of non-reactive gases such as helium or argon. However, these gases are relatively expensive compared to common reactive gases (*e.g.*, air, nitrogen) and can significantly impact the overall cost of plasma surface modifications. In addition, the use of plasma approaches to treat different fluoropolymers can be challenging. Standardized processes and guidelines may not work for polymers of different natures (*i.e.*, degree of fluorination, crystallinity, molecular weight). Accordingly, this thesis proposes an atmospheric pressure nitrogen plasma treatment of fluoropolymer films. The treatment induces a stable surface modification with morphological and physicochemical characteristics that improve the adhesion properties. More specifically, the treatment improves the adhesion of fully fluorinated polymer films to silicones, rubbers, and acrylic adhesives. This information can be used to select the appropriate adhesive for a particular application and to evaluate surface modifications through peel testing. In addition, it was shown that plasma treatment creates a surface that withstands washing with various solvents. Moreover, the findings indicate that the surface energy is not an accurate parameter for assessing plasma-treated fluoropolymers adhesion. Indeed, the evolution of the adhesion was linked to a specific chemical signature that depended on the ratio of specific functional groups in the fluoropolymer surface. Finally, the adhesion obtained from treated surfaces was compared with that from chemically etched fluoropolymers, highlighting that it is possible to get higher adhesion by the treatment proposed here. Overall, this research project highlighted the potential of plasma processes to provide an alternative solution with a lower environmental impact than wet chemical etching, with the advantage of using an atmospheric pressure plasma and nitrogen as working gas.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/137323
Date18 March 2024
CreatorsCaceres Ferreira, Williams Marcel
ContributorsLaroche, Gaétan
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 160 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0038 seconds