Le béton est un matériau dont le comportement est complexe, notamment dans le cas de sollicitations extrêmes. L’objectif de cette thèse est de caractériser expérimentalement le comportement du béton lorsque celui-ci est soumis à des sollicitations générées par un impact (compression confinée et traction dynamique) ; et de développer un outil numérique robuste permettant de modéliser son comportement de manière fiable. Dans la partie expérimentale, on a étudié des échantillons de béton provenant du centre de VTT (Centre de recherche technique en Finlande). Dans un premier temps, des essais statiques de compression triaxiale dont le confinement varie de 0 MPa (compression simple) à 600 MPa ont été réalisés. On observe que, sous l’effet de confinement la rigidité du béton devient plus importante à cause de la réduction de la porosité. Par conséquent, la résistance maximale au cisaillement du béton est augmentée. La présence d’eau joue un rôle important lorsque le degré de saturation est élevé et le béton est soumis à un fort confinement. Au delà d’un certain seuil de confinement, la résistance maximale au cisaillement diminue avec l’augmentation de la teneur en eau. L’eau influence également le comportement volumique du béton. Lorsque tous les pores libres du béton sont fermés sous l’effet de la compaction, la faible compressibilité de l’eau s’oppose à la déformation du béton, de sorte que le béton humide est moins déformé que le béton sec pour une même contrainte moyenne. Le deuxième volet du programme expérimental concerne des essais de traction dynamique à différentes vitesses de chargement, et à différents états d’humidité du béton. Les résultats obtenus montrent que la résistance en traction du béton C50 peut augmenter jusqu’à 5 fois par rapport à sa résistance statique pour une vitesse de déformation de l’ordre de 100 s-1. Dans la partie numérique, on s’intéresse à développer le modèle de comportement du béton PRM couplé (Pontiroli-Rouquand-Mazars) capable de prédire le comportement du béton sous impact. Ce modèle repose sur un couplage entre un modèle d’endommagement capable de décrire des mécanismes de dégradation et de fissuration du béton à faible confinement et un modèle de plasticité permettant de simuler le comportement du béton sous très fort confinement. L’identification du modèle a été réalisée avec les résultats des essais expérimentaux. L’amélioration du modèle, notamment sur le modèle de plasticité, porte sur trois points principaux : prise en compte de l’effet de la contrainte déviatoire dans le calcul de la contrainte moyenne ; de l’effet de l’eau avec la loi poro-mécanique au lieu de la loi des mélanges ; amélioration de la variable de couplage entre le modèle d’endommagment et le modèle élastoplastique avec une prise en compte de l’angle de Lode. Ces améliorations ont ensuite été validées par une confrontation des résultats numériques obtenus et des essais de type impact qui démontrent la fiabilité de la prédiction du modèle. Le modèle amélioré est capable de reproduire le comportement du béton sous différents trajets de chargement et à différents niveaux de confinement tout en tenant compte du degré de saturation du béton. / Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumic behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s-1. In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at weak confinement pressure and a plasticity model which allows to reproduce the concrete behavior under strong confinement pressure. The identification of the model was done using the results of experimental tests. The improvement of this model, especially the plasticity part, focuses on three main points : taking into account the effect of the deviatoric stress in the calculation of the mean stress; better accounting for the effect of water using poromechanical law instead of mixing law, improvement of the coupling variable between the damage model and the elastoplastic model with consideration of the Lode angle. These improvements were then validated by comparing numerical results and impact tests. The improved model is capable of reproducing the behavior of concrete under different loading paths and at different levels of confinement pressure while taking into account the degree of saturation of concrete.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENI028 |
Date | 27 September 2013 |
Creators | Vu, Xuan Dung |
Contributors | Grenoble, Deaudeville, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds