L'inversion de courts segments (moins de 1000 bases) est soupçonnée être un mécanisme majeur de l'évolution des génomes. Deux méthodes de détection ab initio de tels segments sont présentées. La séquence est modélisée par une chaîne de Markov $X^+$. La séquence inverse-complémentaire est alors également modélisée par une chaîne de Markov note $X^-$. Le premier chapitre présente de façon didactique les modèles de Markov utilisés en analyse de séquences génomiques. Une généralisation au cas d'un ordre supérieur à 1 d'un résultat sur la vitesse de convergence vers la distribution stationnaire est également établie. Le deuxième chapitre est consacré à l'étude du score local : $H_(n)=\max_(1\leq i \leq j \leq n)(Y_i+...+Y_j)$, pour une séquence $(Y_1,...,Y_n) \in \R^n$. La loi jointe asymptotique des $r$ plus grandes valeurs de score local est établie à l'aide de la théorie des valeurs extrêmes. Enfin, une démarche de test multiple permettant de choisir $r$ est proposée. Le troisième chapitre propose une statistique de détection fondée sur un rapport de vraisemblance (modèle $X^+$ contre modèle $X^-$) lorsque la longueur du segment retourné est connue. Une approche de type ``fenêtre glissante'' est ensuite appliquée. Une approximation connue de la loi du maximum de ce type de statistique est utilisée pour associer un degré de signification aux segments détectés. Dans le quatrième chapitre, le cas de recherche de segments de longueurs inconnues est traité à l'aide d'une méthode de type score local. Le cinquième chapitre présente l'application de ces méthodes à quelques génomes viraux. Un logiciel développé pour traiter cette problématique est également présenté.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010628 |
Date | 27 September 2005 |
Creators | Robelin, David |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0066 seconds